
SimMechanics
For Use with Simulink®

Modeling

Simulation

Implementation

User’s Guide
Version 2

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SimMechanics User’s Guide

© COPYRIGHT 2001–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 2001 Online only Version 1 (Release 12.1+)
July 2002 First printing Revised for Version 1.1 (Release 13)
November 2002 Online only Revised for Version 2.0 (Release 13+)
June 2004 Second printing Revised for Version 2.2 (Release 14)
October 2004 Online only Revised for Version 2.2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.4 (Release 2006a)
September 2006 Third printing Revised for Version 2.5 (Release 2006b)

Contents

Introducing SimMechanics

1
What Is SimMechanics? . 1-2

SimMechanics and Physical Modeling 1-2

Related Products . 1-3
Requirements for SimMechanics . 1-3
Other Related Products . 1-4

Running a Demo Model . 1-5
What This Demo Illustrates . 1-6
Opening the Model . 1-6
Starting the Demo . 1-10
Modifying the Model . 1-11

What Can You Do with SimMechanics? 1-17
For More Information . 1-17
Modeling Machines with SimMechanics 1-17
Bodies, Coordinate Systems, Joints, and Constraints 1-18
Sensors, Actuators, Friction, and Force Elements 1-19
Simulating and Analyzing Mechanical Motion 1-20
Visualizing and Animating Machines 1-21

Learning More . 1-25
Using the MATLAB Help System for Documentation and

Demos . 1-25
Finding Special SimMechanics Help 1-25

Building and Visualizing Simple Machines

2
Introducing the SimMechanics Block Libraries 2-2

v

Viewing the Blocks . 2-2

Creating SimMechanics Models . 2-7
Essential Steps to Build a Model . 2-7
Essential Steps to Configure and Run a Model 2-9

Building a Simple Pendulum . 2-11
Opening the SimMechanics Block Library 2-12
The World Coordinate System and Gravity 2-12
Configuring a Ground Block . 2-13
Configuring a Body Block . 2-14
Configuring a Joint Block . 2-20
Adding a Sensor and Starting the Simulation 2-24

Visualizing a Simple Pendulum . 2-30
Starting Visualization . 2-30
Rendering the Bodies . 2-31
Visualizing with MATLAB Graphics 2-32
Modeling and Visualizing More Complex Machines 2-35

Four Bar Mechanism . 2-36
Counting the Degrees of Freedom . 2-37
Configuring the Mechanical Environment 2-38
Setting Up the Block Diagram . 2-40
Configuring the Ground and Joint Blocks 2-43
Configuring the Body Blocks . 2-47
Sensing Motion and Running the Model 2-52
For More About the Four Bar Machine 2-57

Representing Motion

3
Kinematics and the Machine’s State of Motion 3-2

Degrees of Freedom . 3-2
The State of Motion . 3-2
Home, Initial, and Assembled Configurations 3-2
For More Information . 3-3

vi Contents

Body Motion in SimMechanics . 3-4
How to Read This Section . 3-4
Overview of Machine Motion . 3-5
Reference Frames and Coordinate Systems 3-5
Relating Coordinate Systems in Relative Motion 3-6
Observing Body Motion in Different Coordinate Systems . . 3-7
Representing Body Translations and Rotations 3-9

How SimMechanics Represents Body Orientation 3-11
Axis-Angle Representation . 3-11
Quaternion Representation . 3-12
Rotation Matrix Representation . 3-12
Euler Angle Representation . 3-13
Converting Rotation Representations 3-14
Converting the Angular Velocity . 3-17

Orienting a Body and Its Coordinate Systems 3-18
Setting Up the Test Body . 3-18
Rotating the Body and Its CG CS Relative to World 3-20
Rotating the Body Relative to Its Center of Gravity 3-22
Creating and Rotating Body Coordinate Systems 3-23

Modeling Mechanical Systems

4
Modeling Machines . 4-3

About SimMechanics Models . 4-3
Creating a SimMechanics Model . 4-4
Connecting SimMechanics Blocks . 4-5
Interfacing SimMechanics Blocks to Simulink Blocks 4-6
Setting SimMechanics Block Properties at the Command

Line . 4-7
Creating SimMechanics Subsystems 4-7
Creating Custom SimMechanics Blocks with Masks 4-9

Modeling Bodies and Grounds . 4-10
Machine Environment Required for Each Machine 4-10
Modeling Grounds . 4-10
Modeling Rigid Bodies . 4-12

vii

Working with Body Coordinate Systems 4-15

Modeling Joints . 4-20
About Joints . 4-20
Creating a Joint . 4-27
Modeling with Massless Connectors 4-29
Modeling with Disassembled Joints 4-33
Cutting Closed Loops . 4-36

Modeling Constraints and Drivers 4-38
What Constraints and Drivers Do . 4-39
Directionality of Constraints and Drivers 4-39
Solving Constraints . 4-40
Restrictions on Using Constraint and Driver Blocks 4-40
Constraint Example: Gear Constraint 4-41
Driver Example: Angle Driver . 4-43

Modeling Actuators . 4-45
Stabilizing Numerical Derivatives in Actuator Signals . . . 4-45
Actuating a Body . 4-46
Varying a Body’s Mass and Inertia Tensor 4-49
Actuating a Joint . 4-52
Actuating a Driver . 4-57
Specifying Initial Positions and Velocities 4-57

Modeling Sensors . 4-63
Home Configuration and Position-Orientation

Measurements . 4-63
Sensing Body Motions . 4-63
Sensing Joint Motions and Forces . 4-65
Sensing Constraint Reaction Forces 4-65

Modeling Force Elements . 4-69
Inserting a Linear Force Between Bodies 4-69
Inserting a Linear Force or Torque Through a Joint 4-71
Customizing Force Elements with Sensor-Actuator

Feedback . 4-72

Checking Model Validity . 4-74
Verifying Machine Topology . 4-74
Counting Degrees of Freedom . 4-77

viii Contents

Running Mechanical Models

5
Running SimMechanics Models in Simulink 5-2

Distinguishing Models and Machines 5-2
Machine Settings via the Machine Environment Block . . . 5-2
Model-Wide Settings via Simulink . 5-2

Configuring a Machine’s Mechanical Environment . . . 5-3
The Machine Environment Block . 5-3
Setting Gravity . 5-3
Choosing Your Machine’s Dimensionality 5-4
Setting Assembly Tolerances . 5-5
Implementing Constraints . 5-6
Analyzing the Motion . 5-7
Handling Motion Singularities . 5-9

Controlling the Simulation . 5-11
Configuring SimMechanics Simulation Diagnostics 5-12
Visualizing Your Machines . 5-13
Choosing a Simulink Solver . 5-13
Starting the Simulation . 5-14

How SimMechanics Works . 5-15
Model Validation . 5-15
Machine Initialization . 5-15
Force Analysis and Motion Integration 5-16
Stiction Mode Iteration . 5-16

Troubleshooting Simulation Errors 5-17
Data Validation Errors . 5-17
Ground and Body Geometry Errors 5-17
Joint Geometry Errors . 5-18
Block Connection and Topology Errors 5-19
Motion Inconsistency and Singularity Errors 5-19
Analysis Mode Errors . 5-22

Improving Performance . 5-23
Simplifying the Degrees of Freedom 5-23
Adjusting Constraint Tolerances . 5-25
Smoothing Motion Singularities . 5-25

ix

Changing the Simulink Solver and Tolerances 5-26
Adjusting the Time Step in Real-Time Simulation 5-27

Generating Code . 5-28
Related Simulink Code Generation Documentation 5-28
Reasons for Generating Code . 5-28
Using Code-Related Products and Features 5-29
How SimMechanics Code Generation Differs from

Simulink . 5-30
Using Run-Time Parameters in Generated Code 5-31

Limitations . 5-33
Changing Block Properties at the Command Line 5-33
Restricted Simulink Tools . 5-33
Unsupported Simulink Tool . 5-33
Simulink Tools Not Compatible with SimMechanics

Blocks . 5-33
Restrictions on Two-Dimensional Simulation 5-34
Restrictions with Generated Code . 5-34

Visualizing and Animating Machines

6
Starting SimMechanics Visualization 6-2

Rendering Your Machines in Static Display 6-2
Animating Your Machines During Simulation 6-3
Other SimMechanics Visualization Controls 6-3
Using SimMechanics Visualization 6-3
Creating an External Virtual Reality Client 6-4

Rendering Body Shapes in SimMechanics 6-5
Choosing the Body Shape . 6-5
Equivalent Ellipsoids . 6-5
Convex Hulls . 6-8

Introducing the SimMechanics Visualization
Window . 6-11
Opening and Updating the SimMechanics Visualization

Window . 6-11

x Contents

Interpreting the Special SimMechanics Symbols 6-12
Using the Standard MATLAB Graphics Controls 6-13
Accessing the Special SimMechanics Features 6-14
Saving and Recalling Display Settings 6-16

Controlling Machine Displays in SimMechanics 6-18
Highlighting Bodies and Body Blocks 6-18
Changing Machine Display Symbols 6-19
Changing Perspective and Window Size 6-22

Animating SimMechanics Simulations 6-24
Controlling the Simulation from the Window 6-24
Changing the Machine Display Refresh Rate 6-24
Speeding Up the Animation . 6-25
Recording and Playing Animations 6-26

Custom Visualization with Virtual Reality 6-28
Creating Virtual Worlds for SimMechanics Models 6-28
Interfacing SimMechanics with Virtual Worlds 6-32

Modeling with Computer-Aided Design

7
Introducing CAD Translation . 7-3

CAD Translation Software Requirements 7-3
Overview of the CAD Translation Steps 7-3
Installing the CAD-to-SimMechanics Translator 7-5

Exporting CAD Assemblies into Physical Modeling
XML . 7-6
Building a CAD Assembly for SimMechanics 7-6
Translating CAD Assemblies into XML 7-10
Troubleshooting Assembly Export Problems 7-12
Getting Help in the Translator Window 7-12

Creating Models from Physical Modeling XML 7-14
Generating Body-Joint CAD-Based Models 7-14
Common Features of CAD-Based Models 7-16

xi

Editing and Completing Generated Models 7-16
Troubleshooting CAD-Based Models 7-19

Overview of CAD Translation Examples 7-22

Exporting a CAD Part . 7-23
Viewing the CAD Assembly . 7-23
Exporting the CAD Assembly . 7-24
Generating the SimMechanics Model 7-24

Designing and Exporting CAD Constraints 7-26
Restricting Degrees of Freedom with Constraints 7-26
Part-Constraint Assembly Examples in This Section 7-26
Locating the Example Assembly Files 7-27
Common Steps for Generating the Two-Part Models 7-27
Block Structure of the Two-Part Models 7-28
Modeling a Six-DoF Joint . 7-29
Modeling a Prismatic Joint . 7-30
Modeling a Revolute Joint . 7-34
Modeling an Inplane Joint . 7-35
Modeling a Spherical-Spherical Massless Connector 7-36

Creating a CAD-Based Robot Arm Model 7-39
Viewing the Robot Arm Assembly . 7-40
Exporting the Robot Arm Assembly 7-41
Generating and Completing the Robot Arm Model 7-41
Simulating and Observing the Robot Arm Motion 7-45

Modeling a Stewart Platform in CAD 7-46
What the Stewart Platform Does . 7-46
Viewing the Stewart Platform Assembly 7-47
Exporting the Stewart Platform Assembly 7-48
Generating the Stewart Platform Model 7-48
Visualizing the Stewart Platform Motion 7-51

xii Contents

Analyzing Motion

8
Dynamics of Mechanical Systems 8-2

Forward and Inverse Dynamics . 8-2
Forces and Torques Determine Accelerations 8-3

Finding Forces from Motions . 8-7
Inverse Dynamics Mode with a Double Pendulum 8-8
Kinematics Mode with a Four Bar System 8-13

Trimming Mechanical Models . 8-18
Restrictions on Trimming Mechanical Models 8-18
Trimming in the Presence of Motion Actuation 8-19
Unconstrained Trimming of a Spring-Loaded Double

Pendulum . 8-20
Constrained Trimming of a Four Bar Machine 8-26

Linearizing Mechanical Models . 8-32
Restrictions on Linearizing Mechanical Models 8-32
Linearizing in the Presence of Motion Actuation 8-33
Open-Topology Linearization: Double Pendulum 8-34
Closed-Loop Linearization: Four Bar Machine 8-40

Case Studies

9
Overview of Case Studies . 9-3

Understanding the Stewart Platform 9-3
About the Case Studies . 9-3
Products Needed for the Case Studies 9-4
References . 9-5

Introducing the Stewart Platform 9-7
Origin and Uses of the Stewart Platform 9-7
Characteristics of the Stewart Platform 9-7
Counting the Degrees of Freedom . 9-8

xiii

Modeling the Stewart Platform in SimMechanics 9-13
Modeling the Physical Plant . 9-13
Modeling Controllers . 9-15
Initializing the Stewart Platform in SimMechanics 9-18
Identifying the Simulink and Mechanical States 9-21
Visualizing the Stewart Platform Motion 9-23

Trimming Through Inverse Dynamics 9-24
What Is Trimming? . 9-24
Ways to Find an Operating Point . 9-25
Trimming in the Kinematics Mode 9-25
Linearizing the Platform at the Operating Point 9-29
Further Suggestions for Inverse Dynamics Trimming 9-32

Designing Controllers . 9-35
Case Study Tasks . 9-35
Case Study Files . 9-36
Nature of the Control Problem . 9-37
Control Transfer Function Forms and Units 9-37
A First Look at the Stewart Platform Control Model 9-38
Improper and Biproper PID Controllers 9-40
Analyzing the PID Controller Response 9-44
Designing a New PID Controller . 9-47
Trimming and Linearizing the Platform Motion 9-50
Improving the New PID Controller 9-56
A Robust, Multichannel Controller 9-63
For More About Designing Controllers 9-67

Simulating with Code . 9-69
Code Generation Tasks . 9-69
For More Information About Code Generation 9-69
Learning About the Model . 9-69
Generating an S-Function Block for the Plant 9-73
Model Referencing the Plant . 9-75
Generating Stand-Alone Code for the Whole Model 9-77

Hardware in the Loop . 9-79
For More Information About xPC Target 9-80
Files Needed for This Study . 9-80
Adjusting Hardware for Computational Demands 9-80
Downloading a Complete Model to the Target 9-81
Configuring for Realistic Hardware 9-87

xiv Contents

Blocks — By Category

10
Machines, Bodies, and Grounds . 10-2

Joints . 10-2
Assembled Joints . 10-2
Disassembled Joints . 10-4
Massless Connectors . 10-4

Constraints and Drivers . 10-5

Actuators and Sensors . 10-5

Force Elements . 10-6

Utilities . 10-6

Blocks — Alphabetical List

11

Commands — Alphabetical List

12

Technical Conventions

A
Mechanical Conventions and Abbreviations A-2

Right-Hand Rule Is Assumed . A-2
Vector Multiplication . A-2
Common Abbreviations . A-2
Glossary Terms . A-2

xv

Mechanical Units . A-3

Bibliography

B

Glossary

Index

xvi Contents

1

Introducing SimMechanics

SimMechanics models and simulates mechanical systems, together with
Simulink® and MATLAB®.

What Is SimMechanics? (p. 1-2) Introduction to SimMechanics and
the Physical Modeling environment

Related Products (p. 1-3) Products you might want to use with
SimMechanics

Running a Demo Model (p. 1-5) A simple conveyor showing how to
use SimMechanics blocks in the
Simulink environment

What Can You Do with
SimMechanics? (p. 1-17)

Survey of what SimMechanics does,
including mechanical modeling and
simulation features

Learning More (p. 1-25) Where to get online help

1 Introducing SimMechanics

What Is SimMechanics?
SimMechanics is a block diagram modeling environment for the engineering
design and simulation of rigid body machines and their motions, using the
standard Newtonian dynamics of forces and torques.

With SimMechanics, you can model and simulate mechanical systems with
a suite of tools to specify bodies and their mass properties, their possible
motions, kinematic constraints, and coordinate systems, and to initiate
and measure body motions. You represent a mechanical system by a
connected block diagram, like other Simulink models, and you can incorporate
hierarchical subsystems.

The visualization tools of SimMechanics display and animate simplified
renderings of 3-D machines, before and during simulation, using the MATLAB
Graphics system.

SimMechanics and Physical Modeling
SimMechanics is part of Simulink Physical Modeling, encompassing the
modeling and design of systems according to basic physical principles.
Physical Modeling runs within the Simulink environment and interfaces
seamlessly with the rest of Simulink and with MATLAB. Unlike other
Simulink blocks, which represent mathematical operations or operate
on signals, Physical Modeling blocks represent physical components or
relationships directly.

Note This SimMechanics User’s Guide assumes that you already have some
experience with building and running models in Simulink.

1-2

Related Products

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with SimMechanics.

Requirements for SimMechanics
You must have current versions of the following products installed to use
SimMechanics:

• MATLAB

• Simulink

SimMechanics Visualization Requirements
The MATLAB Graphics-based visualization feature for SimMechanics
requires Silicon Graphics OpenGL® graphics support on your system in order
to render and animate machines.

If you choose to visualize your models in virtual reality, you can improve your
speed and graphics resolution by adding a graphics accelerator hardware card
to your system. Animation of simulations is sensitive to central processor
and graphics card speed and memory. Experiment to find a reasonable
compromise between quality and speed for your system.

Support for Recorded MATLAB Graphics Animations
You can record simulation animations in Microsoft Audio Video Interleave®

(AVI) format using the MATLAB Graphics-based visualization feature of
SimMechanics. To play back AVI files, you need an AVI-compatible media
application. MATLAB has an internal movie player compatible with AVI. You
can also use an external AVI-compatible player.

If you want to compress your SimMechanics AVI recordings, you need the
Indeo 5 codec installed on your system to record them. Your AVI player might
also require this codec to view compressed recordings.

1-3

http://www.opengl.org

1 Introducing SimMechanics

Other Related Products
The related products listed on the SimMechanics product page at the
MathWorks Web site include toolboxes and blocksets that extend the
capabilities of MATLAB and Simulink. These products will enhance your use
of SimMechanics in various applications.

Physical Modeling Product Family
Use the Physical Modeling product family to model physical systems in
Simulink. In addition to SimMechanics, they include:

• SimDriveline, for modeling and simulating drivetrain systems

• SimHydraulics™, for modeling and simulating hydromechanical systems

• SimPowerSystems, for modeling and simulating electrical power systems

For More Information About MathWorks Products
For more information about any MathWorks software products, see either

• The online documentation for that product if it is installed

• The MathWorks Web site at www.mathworks.com; see the “Products &
Services” section.

1-4

http://www.mathworks.com/products/simmechanics/related.jsp
http://www.mathworks.com/products/simdrive/
http://www.mathworks.com/products/simhydraulics/
http://www.mathworks.com/products/simpower/
http://www.mathworks.com

Running a Demo Model

Running a Demo Model
This demo model uses a few blocks in the library to simulate a simple machine
with feedback control. You will see how SimMechanics implements the model
in conjunction with standard Simulink features.

The demo model simulates a conveyor belt loading mechanism. A simple
controller (not shown), with a sensor and an actuator, guides the mechanism
with a saturation limit and anti-windup logic for the applied torque. The
controller is user-adjustable and sets the stopping point for the pusher.

Conveyor Loader Mechanism

1-5

1 Introducing SimMechanics

What This Demo Illustrates
The conveyor mechanism demo illustrates some important features of
SimMechanics:

• Representing bodies and degrees of freedom with Body and Joint blocks,
respectively

• Using SimMechanics blocks with normal Simulink blocks

• Feeding Simulink signals to and from SimMechanics blocks with Actuator
and Sensor blocks, respectively

• Encapsulating groups of blocks into subsystems

• Visualizing and animating a machine by its component bodies

Caution You might want to make modifications to this demo model. To
avoid errors,

• Do not attempt to connect Simulink signal lines directly to SimMechanics
blocks other than Actuators and Sensors.

• Keep the collocation of the Body coordinate system origins on either side of
each assembled Joint to within assembly tolerances.

Saving modified demo models in a different directory from the demos
is recommended.

Opening the Model
You can open the demo model in several ways. Here is the general procedure
for starting SimMechanics demos from the Start button on the lower left of
the MATLAB desktop:

1 Click the Start button.

2 In the pop-up menu, select Simulink, then SimMechanics, and then
Demos.

1-6

Running a Demo Model

This opens the MATLAB Help browser with Demos selected in the left
Help Navigator pane.

3 Double-click Conveyor Mechanism from the list of models in the list
on the left or on the right.

Alternatively, you can open the same MATLAB Demos window by entering
demos at the MATLAB command line.

To get started quickly with this specific demo, you can use either of these steps:

• Enter mech_conveyor at the MATLAB command line.

• Online Help users can click the model name mech_conveyor here.

1-7

1 Introducing SimMechanics

The Block Diagram Model
The block diagram model opens in a model window.

What the Model Contains
Here are some critical features of the model:

• Ignore the Position Controller, Joint Sensor, and Joint Actuator blocks for a
moment. Note that the loading mechanism follows the tree of bodies and
joints shown in the Conveyor Loader Mechanism on page 1-5:

1-8

Running a Demo Model

- There are four rotating link bodies and one sliding pusher body, as
well as three ground points on the immobile mounting represented by
Ground blocks. Double-click the Body and Ground blocks to see their
dialog boxes.

- The pusher slides and the links rotate relative to one another and to
the ground points on the mounting. There are seven apparent degrees
of freedom (DoFs) in the machine, represented by seven Joints, but
the geometry constrains the motion to one actual DoF. Double-click
the Revolute blocks to see how rotational DoFs are expressed in their
dialog boxes.

- The Prismatic block expresses the linear motion of Pusher relative to
Ground_2. The Revolute block expresses the angular motion of Link4
(the crank of the whole mechanism) relative to Ground_1.

• The Joint Sensor detects the position of Pusher via the Prismatic block. The
Joint Actuator applies torque to Link4 via the Revolute block. Double-click
the Sensor and Actuator blocks to view how the machine motions and
forces/torques are transformed into Simulink signals.

• The Position Controller subsystem converts the Pusher position information
into a feedback signal to actuate Revolute and thus Link4. You can open
the Position Controller block to view this subsystem, which is made of
normal Simulink blocks.

1-9

1 Introducing SimMechanics

• The Reference Position block gives you control over the stopping position
of the pusher by modulating the control signal that actuates Revolute.
Maintaining the initial pusher position requires a fixed torque on Revolute.

• Open the Scope block. You can view both the Pusher position in millimeters
(mm) relative to Ground_2 as the Measured Position plot and the torque in
newton-meters (N-m) applied to Link4 relative to Ground_1 as the Torque
plot.

Starting the Demo
You can now run the model as it is when you first open it:

1 In the Simulation menu, select Configuration Parameters. The
Configuration Parameters dialog box appears. Select the Solver node:

a The default Stop time is inf, so the simulation keeps running once you
start it. You should leave it at inf and stop the simulation manually the
first few times you run it.

Later you can apply a finite stop time (in seconds) if you want.

b Leave the Solver options entries at default values and close the box.

2 From the Simulation menu, select Start. In Microsoft Windows, you can
also click the Start button in the model window toolbar.

The measured position of the pusher and the torque applied to maintain
that position start and remain essentially constant in the Scope plots. The
applied torque is adjusted to maintain the initial pusher position.

1-10

Running a Demo Model

3 To see greater detail at the simulation start, stop the simulation before the
time passes 20 seconds and zoom in on the Scope plots.

Modifying the Model
Here are two modifications of the demo you can try. One illustrates the simple
user-driven controller you can adjust to change the motion of the pusher.
The other illustrates a powerful feature of SimMechanics, visualization of a
machine and animation of its simulated motion.

To make these modifications, it is best to close and restart the demo.

Changing the Pusher Reference Position
The Reference Position block is actually a Simulink Slider Gain block (from
the Simulink Math Library) and controls where the pusher comes to rest.

You can adjust the Reference Position block to change where the pusher stops:

1 Open the Reference Position block. You see an adjustable slider to set the
position of the pusher’s rest point.

1-11

1 Introducing SimMechanics

2 Enter values in the Low and High fields to set the lower and upper limits
of the allowed slider range. The defaults in this demo are 0 and 0.2, with
implied units of meters (m).

3 Enter a value in the central field to set the pusher stopping point, which
you can also adjust by clicking and dragging the slider between the lower
and upper limits. The default is 0 (meters).

You can apply changes to the reference position to the simulation in two ways:

• Reset the Reference Position block first, then start the demo. You see the
pusher trajectory track differently now, toward the new stopping point.

For example, resetting the Reference Position to 0.1 and restarting the
demo produces these Scope plots, with Autoscale and zooming applied.
The asymptotic measured position now tends to 100 mm (0.1 m), and the
torque applied to keep the pusher there has changed:

• Start the demo with the Reference Position block open and move the slider
up and down as the simulation runs. Watch the Scope. The measured
position and necessary torque change to follow the new reference position.

1-12

Running a Demo Model

Visualizing and Animating the Conveyor
You can visualize the conveyor mechanism as a static machine and animate
the simulation as well, by opening the special visualization window built into
SimMechanics. This window is based on MATLAB Graphics.

The SimMechanics visualization window lets you display the bodies of the
machine in two possible abstract renderings:

• Equivalent ellipsoids use the inertia tensors and masses of the bodies.
Each body has a unique homogeneous ellipsoid equivalent to it in mass
and inertia tensor.

• Convex hulls use the attached Body coordinate systems (CSs) of the bodies.
A body must have at least four non-coplanar Body CS origins to enclose
a convex hull with nonzero volume. If the Body has fewer than four
Body CS origins or if the origins are coplanar or collinear or coincident,
SimMechanics visualization renders it with simpler figures (triangle, line,
or point).

Convex Hulls. First try visualizing the conveyor with bodies rendered as
convex hulls:

1 From the Simulation menu, select Configuration Parameters. The
Configuration Parameters dialog box appears.

2 Select the SimMechanics node. In the Visualization area, select the
Update machine visualization on update diagram and Animate
machine during simulation check boxes.

3 Leave the other defaults as they are and close the dialog. From the Edit
menu, select Update Diagram.

A MATLAB Graphics window appears, displaying the conveyor machine at
rest in its initial state.

The bodies are rendered in the default rendering, as convex hulls. The
bodies and Body coordinate system axis triads are also displayed as
defaults.

4 Change Reference Position to a nonzero value such as 0.1 or 0.2.

1-13

1 Introducing SimMechanics

5 Restart the simulation. The window animates the machine in motion. You
can compare this motion to the plots in the scope.

6 Click a body in the visualization window. The model window comes back
into focus with the corresponding Body block highlighted in color.

7 Open the SimMechanics menu in the MATLAB Graphics menu bar.

Here, you can reconfigure the SimMechanics display properties for
machines: bodies, Body CS axis triads, colored fill-in body surface patches
connecting Body CSs on the same body, and user viewpoint orientation.

1-14

Running a Demo Model

8 Leave the visualization window open for the next set of steps.

Equivalent ellipsoids. Now visualize the conveyor with bodies rendered
as ellipsoids:

1 From the SimMechanics menu at the top of the visualization window,
select Ellipsoids (so that a check mark appears beside the menu entry)
and deselect Convex Hulls (so that the check mark beside the menu
entry vanishes).

The machine display in the visualization window changes. The conveyor
machine appears at rest in its initial state but with the bodies rendered as
equivalent ellipsoids.

2 Restart the simulation. The viewer now animates the machine in motion.

3 Use the SimMechanics menu to experiment with the visualization
settings. The SimMechanics toolbar contains most of these functions as
well.

See Chapter 6, “Visualizing and Animating Machines” for more about how
to control the machine visualization.

1-15

1 Introducing SimMechanics

4 While the animation is running, open the Reference Position block and
move the slider up and down. In addition to what you can see in the Scope
plots, the window directly animates the pusher trajectory in space as the
mechanism responds to your adjustment.

1-16

What Can You Do with SimMechanics?

What Can You Do with SimMechanics?
SimMechanics is a set of block libraries and mechanical modeling and
simulation features for use with Simulink. You connect SimMechanics blocks
to normal Simulink blocks through Sensor and Actuator blocks.

The blocks in these libraries are the elements you need to model mechanical
systems consisting of any number of rigid bodies, connected by joints
representing translational and rotational degrees of freedom. SimMechanics
can represent machines with components organized into hierarchical
subsystems, as in normal Simulink models. You can impose kinematic
constraints, apply forces/torques, integrate Newton’s equations, and measure
resulting motions. You can see some of these features at work in the Conveyor
Loader demo model.

For More Information
See these chapters for complete details on modeling and simulating with
SimMechanics:

• Chapter 4, “Modeling Mechanical Systems” for more about machines,
bodies, joints, constraints, drivers, sensors, actuators, and force elements

• Chapter 5, “Running Mechanical Models” for more about simulation and
code generation

• Chapter 6, “Visualizing and Animating Machines” for more about
visualization and animation

• Chapter 7, “Modeling with Computer-Aided Design” for more about
combining SimMechanics with computer-aided design (CAD)

• Chapter 8, “Analyzing Motion” for more about motion analysis modes

Glossary Terms For an explanation of important terms, see the Glossary.

Modeling Machines with SimMechanics
These are the major steps you follow to build and run a model representation
of a machine:

1-17

1 Introducing SimMechanics

1 Specify body inertial properties, degrees of freedom, and constraints, along
with coordinate systems attached to bodies to measure motions and forces.

2 Set up sensors to record motions and forces, as well as actuators and force
elements to initiate motions and apply forces, including continuous and
discontinuous friction.

3 Start the simulation, calling the Simulink solvers to find the motions of the
system, while maintaining any imposed constraints. You can also generate,
compile, and run code versions of your models.

4 Visualize the machine while building the model and animate the simulation
while running it, using the SimMechanics visualization window.

Bodies, Coordinate Systems, Joints, and Constraints
SimMechanics supports user-defined Body blocks specified by their masses,
inertia tensors, and attached Body coordinate systems (CSs). You connect
the bodies to one another with joints representing the possible motions of
bodies relative to one another, the system’s degrees of freedom (DoFs). You
can impose kinematic constraints on the allowed relative motions of the
system’s bodies. These constraints restrict the DoFs or drive the DoFs as
explicit functions of time.

The SimMechanics interface gives you many ways to specify CSs,
constraints/drivers, and forces/torques. You can

• Attach Body CSs to different points on Body blocks to specify local axes and
origins for actuating and sensing.

• Take Joint blocks from the SimMechanics library or extend the existing
Joint library by constructing your own custom Joints.

• Use other Simulink tools as well as MATLAB expressions.

User-Defined Local Coordinate Systems
SimMechanics automatically sets up a single inertial reference frame and CS
called World. You can also set up your own Local CSs:

• Grounded CSs attached to Ground blocks at rest in World but displaced
from the World CS origin

1-18

What Can You Do with SimMechanics?

• Body CSs fixed on and moving rigidly with the bodies

Kinematic Constraints
Specifying kinematic relations between any two bodies, you can constrain
the motion of the system by connecting Constraint blocks to pairs of Bodies.
Connecting Driver blocks applies time-dependent constraints.

Sensors, Actuators, Friction, and Force Elements
Sensors and Actuators are the blocks you use to interface between normal
Simulink blocks and SimMechanics blocks. Force Elements represent internal
forces that require no external input.

• Sensor blocks detect the motion of Bodies and Joints.

- Sensor block outputs are Simulink signals that you can use like any
other Simulink signal. You can connect a Sensor block to a Simulink
Scope block and display the motions in a system.

- You can feed these Sensor output signals back to a SimMechanics system
via Actuator blocks, to specify forces/torques in the system.

• Actuator blocks specify the motions of Bodies or Joints.

- They accept force/torque signals from Simulink and can apply
forces/torques on a body or joint from these signals. The Simulink
signals can include Sensor block outputs fed back from the system itself.

- They detect discrete locking and unlocking of Joints to implement
discontinuous static friction forces.

- They specify the position, velocity, and acceleration of bodies or joints as
explicit functions of time.

- They prepare a system’s initial kinematic state (positions and velocities)
for the forward integration of Newtonian dynamics.

Force Elements model internal forces between bodies or acting on joints
between bodies. Internal forces depend only on the positions and velocities of
the bodies themselves, independent of external signals.

1-19

1 Introducing SimMechanics

Simulating and Analyzing Mechanical Motion
SimMechanics provides four modes for analyzing the mechanical systems you
simulate: Forward Dynamics, Inverse Dynamics, Kinematics, and Trimming.
You can also convert any mechanical model, in any mode, to a portable code
version.

Mathematical Determination of Rigid Body Motion
For the forward dynamics to be mathematically solvable, the system must
satisfy certain conditions:

• The masses and inertia tensors of all bodies are known.

• All forces and torques acting on each body at each instant of time are
known.

• Any kinematic constraints among DoFs are specified as constraints among
positions and/or velocities alone. If the constraints are mutually consistent
and are fewer in number than the DoFs, the system’s motion is nontrivial
and can be found by integration.

• Initial conditions (initial positions and velocities) are specified and
consistent with all constraints.

In Inverse Dynamics or Kinematics analysis modes, you specify the motions
instead and obtain the forces/torques needed to produce those motions.

Forward Dynamics and Linearization
In the Forward Dynamics mode, SimMechanics uses the Simulink suite of
ordinary differential equation (ODE) solvers to solve Newton’s equations,
integrating applied forces/torques and obtaining the resulting motions. The
ODE solvers project the motion of the DoFs onto the mathematical manifold
of the kinematic constraints and yield the forces/torques of constraint acting
within the system.

You can also use the Simulink linearization tools to linearize the forward
motion of a system and obtain its response to small perturbations in
forces/torques, constraints, and initial conditions.

1-20

What Can You Do with SimMechanics?

Inverse Dynamics
SimMechanics can solve the reverse of the forward dynamics problem: the
Inverse Dynamics mode determines the forces/torques needed to produce a
given set of motions that you apply to the machine. This mode works only
with open topology systems (model diagrams without closed loops).

Kinematics
You cannot analyze machines represented by model diagrams with closed
topology (models with loops) using the Inverse Dynamics mode. The
Kinematics mode analyzes the motion of closed-loop models, including the
invisible constraints imposed by loop closures.

You also use the Kinematics mode to determine the forces/torques needed to
produce a given set of motions applied to a closed-loop machine model.

Constraint and Driver blocks can appear only in closed loops, so you use the
Kinematics mode to analyze constraint forces/torques as well.

Trimming
Finally, the Trimming mode allows you to use the Simulink trimming features
to search for steady or equilibrium states in a machine’s motion. These states,
once found, are the starting point for linearization analysis.

Generating Code
SimMechanics is compatible with the Simulink Accelerator, Real-Time
Workshop®, and xPC Target. These optional products let you generate code
versions of the models you create originally in Simulink with block diagrams,
enhancing simulation speed and model portability.

The presence of static friction in a mechanical model creates dynamical
discontinuities and triggers mode iterations in Simulink. These discontinuities
and mode iterations place certain restrictions on code generation.

Visualizing and Animating Machines
SimMechanics supports an internal visualization window as a powerful aid
in building, animating, and debugging machines. (For an example of its use,

1-21

1 Introducing SimMechanics

see “Running a Demo Model” on page 1-5.) The machine is displayed in a
MATLAB Graphics window. You can use all the standard MATLAB Graphics
to change the viewer perspective.

The window also has options and features specific to SimMechanics. It
displays the bodies and their Body coordinate systems (CSs) in an abstract,
simplified form. You can render the bodies as convex hulls or as equivalent
ellipsoids.

Visualizing Bodies During Machine Building
One way to use the visualization window is while you’re building your
machine:

• You can open a MATLAB Graphics window before you start to build and
then watch the bodies appear and be configured in the display as you create
and configure them in your model window.

This approach is especially useful if you’re just starting to learn how
to use SimMechanics or how to model complex machines. In that case,
visualization can guide you in assembling the body geometries and
connections.

• You can also build a model without visualization, then open a MATLAB
Graphics window when you’re done to see the completed machine.

Rendering Bodies
The visualization window has two abstract shapes to render the bodies, one
derived from body mass properties, the other from bodies’ attached Body
coordinate systems (CSs). These shapes are geometric schematics, because
SimMechanics accepts only limited body information.

Mass Properties. A rigid body’s dynamics are partly determined by the
body’s total mass and how that mass is distributed in space, as encapsulated
in its inertia tensor. Any rigid body has a unique corresponding homogeneous
ellipsoid with the same mass and inertia tensor.

Using these equivalent ellipsoids is one visualization mode of rendering a
body in space. The relative sizes of the ellipsoid axes indicate the relative
inertial moments about each axis.

1-22

What Can You Do with SimMechanics?

Here is a rigid body rendered by its equivalent ellipsoid.

Geometric Properties. In SimMechanics, every body is represented by a
Body block with at least one attached Body CS. The minimum Body CS origin
is located at the body’s center of gravity (CG).

You can also create other Body CSs on a Body. Any Joint, Constraint/Driver,
Actuator, or Sensor attached to a Body must be attached at a Body CS origin.

The set of Body CS origins can be enveloped by a surface; if there are more
than three non-coplanar origins, the surface encloses a volume. The minimal
surface with outward-bending curvature enveloping this set is the convex hull,
which is the other abstract shape available for visualizing a body in space.
Fewer than four CS origins produce simpler Body figures.

1-23

1 Introducing SimMechanics

Here is the same body as a convex hull. The Body CS origins are coplanar in
this case, and the hull is two triangles. The hull body surfaces are turned off
to emphasize the hull outline.

Animating Machine Motion During Simulation
Besides rendering your machine bodies either while you build a model or as
a completed model, you can also keep the visualization window open while
a model is running in the Simulink model window. The MATLAB Graphics
window animates the simulation of the bodies’ motions, whether you choose to
render the bodies as ellipsoids or as convex hulls, and moves in parallel with
model changes on the Simulink side.

1-24

Learning More

Learning More
You can get help online in a number of ways to assist you while using
SimMechanics.

Using the MATLAB Help System for Documentation
and Demos
The MATLAB Help browser allows you to access the documentation and demo
models for all the MATLAB and Simulink-based products that you have
installed. The online help includes an online index and search system.

Consult the “Help for Using MATLAB” section of the Using MATLAB
documentation for more about the MATLAB help system.

Finding Special SimMechanics Help
This user’s guide also includes reference chapters for use with SimMechanics.

• “Technical Conventions” explains mechanical conventions, abbreviations,
and units.

• The “Bibliography” lists external references on mechanics, mechanical
simulation, and related topics.

• The Glossary explains special terms and phrases used in this guide.

In addition, many SimMechanics demos have help links represented by the
information symbol . Click this symbol to open that demo’s documentation
in the Help browser.

1-25

1 Introducing SimMechanics

1-26

2

Building and Visualizing
Simple Machines

Constructing simple mechanical models with SimMechanics is easy to learn
if you already know how to make Simulink models. If you are not already
familiar with Simulink, see the Simulink documentation.

Introducing the SimMechanics Block
Libraries (p. 2-2)

Overview of the SimMechanics block
libraries for representing machine
components

Creating SimMechanics Models
(p. 2-7)

Summary of the most important
steps for representing a machine by
a SimMechanics model

Building a Simple Pendulum
(p. 2-11)

A beginning tutorial to
model and simulate a simple
one-degree-of-freedom system

Visualizing a Simple Pendulum
(p. 2-30)

A tutorial that shows how to
visualize a simple machine with
SimMechanics

Four Bar Mechanism (p. 2-36) A more advanced tutorial that
models and simulates a closed-loop
machine

2 Building and Visualizing Simple Machines

Introducing the SimMechanics Block Libraries
SimMechanics is organized into hierarchical libraries of related blocks. The
next section, “Viewing the Blocks” on page 2-2 shows how to view these
libraries and gives you a summary of what they contain.

• “Bodies Library” on page 2-4

• “Joints Library” on page 2-5

• “Constraints & Drivers Library” on page 2-5

• “Sensors & Actuators Library” on page 2-5

• “Force Elements Library” on page 2-5

• “Utilities Library” on page 2-6

Viewing the Blocks
There are several ways to get to the top-level SimMechanics library on
Microsoft Windows and UNIX platforms.

2-2

Introducing the SimMechanics Block Libraries

Microsoft Windows Platforms
Microsoft Windows users can access the blocks through the Simulink Library
Browser. Expand the SimMechanics entry in the contents tree.

You can also access the blocks directly inside the SimMechanics library in
several ways:

• In the Simulink Library Browser, right-click the SimMechanics entry and
select Open the SimMechanics Library. The library appears.

• Click the Start button in the lower left corner of your MATLAB desktop.
In the pop-up menu, select Simulink, then SimMechanics, then Block
Library.

• Enter mechlib at the MATLAB command line prompt.

2-3

2 Building and Visualizing Simple Machines

UNIX Platforms
UNIX users can click the Simulink icon on the MATLAB menu bar, open the
Blocksets & Toolboxes library and then SimMechanics. You can also enter
mechlib at the command line.

The SimMechanics Library
Once you perform one of these steps, the SimMechanics library opens.

Note This library displays six top-level block groups. You can expand each
library by double-clicking its icon. The Joints library contains two second-level
sublibraries.

The following sections summarize the blocks in each library. For an
explanation of special terms, see the Glossary. You can also consult the
SimMechanics block reference.

Bodies Library
The Bodies library provides the Body block for representing user-defined
bodies by their mass properties (masses and inertia tensors), their positions
and orientations, and their attached Body coordinate systems (CSs). This
library also contains the Ground block representing immobile ground points,
which have their own Grounded CSs, and the Machine Environment block, for
configuring the mechanical settings of a SimMechanics block diagram.

2-4

Introducing the SimMechanics Block Libraries

Joints Library
The Joints library provides blocks to represent the relative motions between
bodies as degrees of freedom (DoFs). The library is made up of assembled
Joints listed individually and two sublibraries of specialized Joint blocks.

An assembled joint restricts the Body CSs on the two bodies to which it is
connected. The assembled Joints are the primitive Prismatic, Revolute, and
Spherical blocks and ready-made composite Joints. Unless it is explicitly
labeled as disassembled, you can assume a generic Joint block is assembled.

Joints/Disassembled Joints Sublibrary. The Disassembled Joints
sublibrary provides blocks for disassembled joints, modified joints that do not
restrict the Body CSs on the two connected bodies or the DoF axes of the two
bodies. You can only use Disassembled Joints to close a loop in your machine.
You cannot sense or actuate Disassembled Joints.

Joints/Massless Connectors Sublibrary. The Massless Connectors
sublibrary provides blocks for massless connectors, composite joints whose
DoFs are separated by a fixed distance. You cannot actuate or sense Massless
Connectors.

Constraints & Drivers Library
The Constraints & Drivers library provides blocks to specify prior restrictions
on DoFs between Bodies. These restrictions can be time-independent
constraints or time-dependent driving of DoFs with Simulink signals.

Sensors & Actuators Library
The Sensors & Actuators library provides blocks for sensing and initiating the
motions of joints and bodies. These blocks play a special role in connecting
SimMechanics blocks to other Simulink blocks, as described in “Connecting
SimMechanics Blocks” on page 4-5, “Modeling Actuators” on page 4-45, and
“Modeling Sensors” on page 4-63.

Force Elements Library
The Force Elements library provides blocks for creating forces or torques
between bodies. These blocks model forces internal to your machine.

2-5

2 Building and Visualizing Simple Machines

Utilities Library
The Utilities library contains miscellaneous blocks useful in building models.

2-6

Creating SimMechanics Models

Creating SimMechanics Models
To become comfortable building mechanical models, you might find it helpful
to work through the guided examples in subsequent sections of how to
configure and put together elements of SimMechanics to simulate simple
machines. This section gives you an overview of the model-building process
before you start:

• “Essential Steps to Build a Model” on page 2-7

• “Essential Steps to Configure and Run a Model” on page 2-9

The special terms used in this guide are summarized in the “Glossary” on
page Glossary-1.

Essential Steps to Build a Model
You use the same basic procedure for building a SimMechanics model
regardless of its complexity. The steps are similar to those for building a
regular Simulink model. More complex models add steps without changing
these basics.

1 Select Ground, Body, and Joint blocks. From the Bodies and Joints
libraries, drag and drop the Body and Joint blocks needed to represent your
machine, including a Machine Environment block and at least one Ground
block, into a Simulink model window.

The Machine Environment block represents your machine’s mechanical
settings.

Ground blocks represent immobile ground points at rest in absolute
(inertial) space.

Body blocks represent rigid bodies.

Joint blocks represent relative motions between the Body blocks to which
they are connected.

2 Position and connect blocks. Place Joint and Body blocks in proper relative
position in the model window and connect them in the proper order. The
essential result of this step is creation of a valid tree block diagram made of

2-7

2 Building and Visualizing Simple Machines

Machine Env — Ground — Joint — Body — Joint — Body — ... — Body

with an open or closed topology and where at least one of the bodies is a
Ground block. Connect exactly one environment block to a Ground.

A Body can have more than two Joints attached, marking a branching of
the sequence. But Joints must be attached to two and only two Bodies.

3 Configure Body blocks. Click the Body blocks to open their dialog boxes;
specify their mass properties (masses and moments of inertia), then
position and orient the Bodies and Grounds relative to the World coordinate
system (CS) or to other CSs. You set up Body CSs here.

Look for intensive explanation and examples of positioning and orienting
bodies in Chapter 3, “Representing Motion”.

4 Configure Joint blocks. Click each of the Joint blocks to open its dialog box
and set translation and rotation axes and spherical pivot points.

5 Select, connect, and configure Constraint and Driver blocks. From the
Constraints & Drivers library, drag, drop, and connect Constraint and
Driver blocks in between pairs of Body blocks. Open and configure each
Constraint/Driver’s dialog box to restrict or drive the relative motion
between the two respective bodies of each constrained/driven pair.

6 Select, connect, and configure Actuator and Sensor blocks. From the
Sensors & Actuators library, drag and drop the Actuator and Sensor blocks
that you need to impart and sense motion. Reconfigure Body, Joint, and
Constraint/Driver blocks to accept Sensor and Actuator connections.
Connect Sensor and Actuator blocks. Specify control signals (applied
forces/torques or motions) through Actuators and measure motions through
Sensors.

Actuator and Sensor blocks connect SimMechanics blocks to
non-SimMechanics Simulink blocks. You cannot connect SimMechanics
blocks to regular Simulink blocks otherwise. Actuator blocks take inport
signals from normal Simulink blocks (for example, from the Simulink
Sources library) to actuate motion. Sensor block output ports generate
Simulink signals that you can feed to normal Simulink blocks (for example,
from the Simulink Sinks library).

2-8

Creating SimMechanics Models

In the most straightforward model of a machine, you apply forces/torques
and initial conditions, then start the simulation in the Forward Dynamics
mode to obtain the resulting motions. In the Kinematics and Inverse
Dynamics modes, you apply motions to all independent degrees of freedom.
With these modes, you can find the forces/torques needed to produce these
imposed motions.

7 Encapsulate subsystems. Systems made from SimMechanics blocks can
function as subsystems of larger models, like subsystems in normal
Simulink models. You can connect an entire SimMechanics model as a
subsystem to a larger model by using the Connection Port block in the
Utilities library.

Essential Steps to Configure and Run a Model
After you’ve built your model as a connected block diagram, you need to decide
how you want to run your machine, configure SimMechanics and Simulink
settings, and set up visualization.

• SimMechanics offers four analysis modes for running a machine model.
The mode you will probably use most often is Forward Dynamics.

But a more complete analysis of a machine makes use of the Kinematics,
Inverse Dynamics, and Trimming modes as well. You can create multiple
versions of the model, each with the same underlying machine, but
connected to Sensors and Actuators and configured differently for different
modes.

• You can also use the powerful visualization and animation features of
SimMechanics. You can visualize your machine as you build it or after you
are finished but before you start the simulation, as a tool for debugging
the machine geometry. You can also animate the machine model as you
simulate.

• Choose the analysis mode, as well as other important mechanical settings,
in your Machine Environment dialog. Start visualization and adjust
Simulink settings in the Simulink Configuration Parameters dialog.
See “Four Bar Mechanism” on page 2-36 for an example.

The tutorials of this chapter introduce you to most of these steps.

2-9

2 Building and Visualizing Simple Machines

Caution You might want to make modifications to these tutorial models.
To avoid errors,

• Do not attempt to connect Simulink signal lines directly to SimMechanics
blocks other than Actuators and Sensors

• Keep the collocation of the Body coordinate system origins on either side of
each assembled Joint to within assembly tolerances

You should save multiple versions of models as you try different analysis
modes and configurations.

The first tutorial in the next section shows you how to configure the most
basic blocks in any model: Machine Environment, Ground, Body, and a Joint,
in order to create a simple pendulum model. The second tutorial explains how
to visualize and animate the pendulum.

2-10

Building a Simple Pendulum

Building a Simple Pendulum
In this first tutorial, you drag, drop, and configure the most basic blocks
needed for any mechanical model, as well as add some sensors to measure
motion. The tutorial guides you through these aspects of model-building:

• “The World Coordinate System and Gravity” on page 2-12

• “Configuring a Ground Block” on page 2-13

• “Configuring a Body Block” on page 2-14

• “Configuring a Joint Block” on page 2-20

• “Adding a Sensor and Starting the Simulation” on page 2-24

The end result is a model of a simple pendulum. The pendulum is a swinging
steel rod. We strongly recommend that users work through this tutorial first
before moving on to, “Visualizing a Simple Pendulum” on page 2-30.

A Simple Pendulum: A Swinging Steel Rod

2-11

2 Building and Visualizing Simple Machines

Opening the SimMechanics Block Library
Following one of the ways described earlier in the “Viewing the Blocks” on
page 2-2 section in this chapter, open the SimMechanics library. Then from
the SimMechanics library, open a new, empty Simulink model window.

The World Coordinate System and Gravity
Before you configure a Ground block, you need to understand SimMechanics’
internally defined fixed or “absolute” coordinate system (CS) called World.
The World CS sits at rest in the inertial reference frame also called World.
The World CS has an origin (0,0,0) and a triad of right-handed, orthogonal
coordinate axes.

The default World coordinate axes are defined so that

+x points right

+y points up (gravity in -y direction)

+z points out of the screen, in three dimensions

The vertical direction or up-and-down is determined by the gravity vector
direction (acceleration g) relative to the World axes. Gravity is a background
property of a model that you can reset before starting a simulation, but does
not dynamically change during a simulation.

See “Running SimMechanics Models in Simulink” on page 5-2 for displaying
global mechanical properties of SimMechanics models.

2-12

Building a Simple Pendulum

Configuring a Ground Block
World serves as the single absolute CS that defines all other CSs. But you can
create additional ground points at rest in World, at positions other than the
World origin, by using Ground blocks. Ground blocks, representing ground
points, play a dynamical role in machine models. They function as immobile
bodies and also serve to implement a machine’s mechanical environment.

Minimum Ground Blocks Every machine model must have at least one
Ground block. Exactly one Ground block in every machine must be connected
to a Machine Environment block.

A Ground Point Relative to World

Steps to Configuring the Ground Block
Now place a fixed ground point at position (3,4,5) in the World CS:

1 In the SimMechanics library, open the Bodies library.

2 Drag and drop a Ground and a Machine Environment block from the Bodies
library into the model window. Close the Bodies library.

3 Open the Ground block dialog box. Into the Location [x y z] field, enter
the vector [3 4 5]. Select the Show Machine Environment port check
box. Click OK to close the dialog. Connect the environment block.

2-13

2 Building and Visualizing Simple Machines

Properties of Grounds
At every ground point, a Grounded CS is automatically created:

• The origin of each Grounded CS is the ground point itself.

• The Grounded CS axes are always fixed to be parallel to the World CS axes,
as shown in the figure A Ground Point Relative to World on page 2-13.

Configuring a Body Block
While you need one Machine Environment and at least one Ground block
to make a machine model, a real machine consists of one or more rigid
bodies. So you need to translate the components of a real machine into block
representations. This section explains how you use a Body block to represent
each rigid body in your machine:

• “Characteristics of a Body Block” on page 2-15

• “Properties of the Simple Pendulum Body” on page 2-16

• “Configuring the Body Dialog” on page 2-17

Although the body is the most complicated component of a machine,
SimMechanics does not use the full geometric shape and mass distribution of
the body. SimMechanics only needs certain mass properties and simplified
geometric information about the body’s center of gravity, its orientation,

2-14

Building a Simple Pendulum

and the coordinate systems attached to the body. Chapter 3, “Representing
Motion” explains in detail how to orient bodies and their coordinate systems.

Setting these properties sets the body’s initial conditions of motion, if you do
nothing else to the Body block or its connected Joints before simulating.

Characteristics of a Body Block
The main characteristics of a Body block are its mass properties, its position
and orientation in space, and its attached Body coordinate systems (CSs).

The mass properties include the mass and inertia tensor. The mass is a real,
positive scalar. The inertia tensor is a real, symmetric 3-by-3 matrix. It does
not have to be diagonal.

The position of the body’s center of gravity (CG) and orientation relative to
some coordinate system axes indicate where the body is and how it is rotated.
These are the body’s initial conditions during construction of the model and
remain so when you start the simulation, unless you change them before
starting.

The attached Body CSs (their origins and coordinate axes) are fixed rigidly in
the body and move with it. The minimum CS set is one, the CS at the CG (the
CG CS), with its CS origin at the center of gravity of the body. The default
CS set is three, the CG CS and two additional CSs called CS1 and CS2 for
connecting to Joints on either side. See the next section, “Configuring a Joint
Block” on page 2-20.

Beyond the minimum CS at the CG, you can attach as many Body CSs on
one Body as you want. You need a separate CS for each connected Joint,
Constraint, or Driver and for each attached Actuator and Sensor.

The inertia tensor components are interpreted in the CG CS, setting the
orientation of the body relative to the CG CS axes. The orientation of the
CG CS axes relative to the World axes then determines the absolute initial
orientation of the body. Since the CG CS axes remain rigidly fixed in the body
during the simulation, this relative orientation of the CG CS axes and the
body does not change during motion. The inertia tensor components in the
CG CS also do not change. As the body rotates in inertial space, however, the
CG CS axes rotate with it, measured with respect to the absolute World axes.

2-15

2 Building and Visualizing Simple Machines

Properties of the Simple Pendulum Body
The simple pendulum is a uniform, cylindrical steel rod of length 1 meter and
diameter 2 cm. The initial condition is the rod lying parallel to the negative
x-axis, horizontal in the gravity field. One end of the rod, the fixed pivot for
the rod to swing, is located at the ground point (3,4,5). Its coordinate system is
called CS1. The center of gravity and the origin of the CG CS is the geometric
center of the rod. Take the CG CS axes to be parallel to the World axes as you
set up the pendulum.

Uniform steel has density ρ = 7.93 gm/cc (grams per cubic centimeter). In the
CG CS here, the inertia tensor I is diagonal, and Izz controls the swinging
about the z-axis, in the x-y plane. The inertia tensor is always evaluated with
the origin of coordinates at the CG. For a rod of length L = 1 m and radius r =
1 cm, the mass m = ρπr2L = 2490 gm (grams), and the inertia tensor I reads

I
I

I

mr

mL

mL

xx

yy

zz

0 0
0 0
0 0

2
0 0

0
12

0

0 0
12

2

2

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= ×

×

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1250 0 0

0 2 08 10 0

0 0 2 08 10

6

6

.

.

in gm-cm2 (gram-centimeters2). The x-axis is the cylinder’s symmetry axis.
Thus Iyy = Izz.

The mass and geometric properties of the body are summarized in the
following table and depicted in the figure Equivalent Ellipsoid of Simple
Pendulum with Body Coordinate Systems on page 2-17.

Body Data for the Simple Pendulum

Property Value

Mass (gm) 2490

Inertia tensor (kg-m2) [1.25e-4 0 0;
0 0.208 0;
0 0 0.208]

2-16

Building a Simple Pendulum

Body Data for the Simple Pendulum (Continued)

Property Value

CG Position/Origin (m) [2.5 4 5]

CS1 Origin (m) [3 4 5]

Configuring the Body Dialog
Take the steps to configuring a Body block in several stages.

Equivalent Ellipsoid of Simple Pendulum with Body Coordinate Systems

Adding the Body Block. To start working with the Body block:

1 Open the Bodies library in the SimMechanics library.

2 Drag and drop a Body block into your model window.

3 Open the Body block dialog box. Note the two main areas you need to
configure:

2-17

2 Building and Visualizing Simple Machines

• Mass properties — These are the mass and inertia tensor.

• Body coordinate systems — These are the details about the position
and orientation of the Body CSs.

Note To apply your dialog entries at any time, click Apply. To apply your
entries and close a dialog, click OK.

Specifying the Body’s Mass Properties. Now enter the body’s mass and
inertia tensor:

2-18

Building a Simple Pendulum

1 Use the data from the table Body Data for the Simple Pendulum on page
2-16.

In the Mass field, enter 2490 and change the units to g (grams).

2 In the Inertia field, enter [1.25e-4 0 0; 0 0.208 0; 0 0 0.208] and
leave the default units as kg-m2.

Specifying Body Coordinate Systems (Position). Enter the translational
position of the body and its Body CS origins in space:

1 Use the data from the table Body Data for the Simple Pendulum on page
2-16, and work on the Position pane. Vectors are assumed translated from
the World origin and oriented to the World axes.

2 Note the three default CSs in the Body dialog box. The CS at the CG is
necessary for any Body, and you will connect CS1 to the Ground with
a Joint shortly.

Delete CS2 by selecting its line in the Body CS list and clicking the Delete
button in the Body CS controls.

You have two already existing CSs not on this Body that you can use to
specify the positions of the Body CS origins that are on this Body:

• Preexisting World origin at [0 0 0]

• The Adjoining CS on the neighboring body, in this case the Grounded
CS origin at [3 4 5]

3 Specify the CG and CS1 origins relative to World:

a In the pull-down menu under Translated from Origin of, choose
World for both coordinate systems, CG and CS1.

b Under Origin Position Vector, specify the position of the origin of each
CS, translated from the World origin:

[3 4 5] for CS1

[2.5 4 5] for CG

2-19

2 Building and Visualizing Simple Machines

4 Select a CS relative to whose coordinate axes the components of the
vectors in the last step are measured. You choose these CS axes in the
Components in Axes of menu. Select World for both CSs. Leave the
units as m (meters).

Specifying Body Coordinate Systems (Orientation). Enter the rotational
orientation of the body and its Body CS axes in space:

1 Work on the Orientation pane. The default orientation for all CS axes is
parallel to World. The sign of all rotations is determined by the right-hand
rule.

In the figure Equivalent Ellipsoid of Simple Pendulum with Body
Coordinate Systems on page 2-17, the CS1 and CG axes are oriented
parallel to the World axes, so the CS1 and CG axes need no rotation.

2 For both CSs, set the Relative to CS menu to World.

3 For CG and CS1, leave the Orientation Vector at default [0 0 0] and
the Specified Using Convention at default Euler X-Y-Z. Close the
Body dialog.

Configuring a Joint Block
A machine is made up of Bodies with geometric and mass information. But
Bodies carry no information of how they move. The possible directions of
motion that a Body can take are called its degrees of freedom (DoFs), and this
section explains how you represent these DoFs by Joint blocks:

• “How to Connect a Joint Between Two Bodies” on page 2-21

• “Revolute Joint for the Simple Pendulum” on page 2-21

2-20

Building a Simple Pendulum

DoFs Are Relative In SimMechanics, DoFs and the Joints that represent
them are relative DoFs. That is, DoFs represent the possible motions between
one body and another. So a DoF is defined by a pair of bodies, and you must
connect every Joint to two and only two Bodies.

One (but not both) of the members of such a pair of Bodies can be a Ground.
The other member Body of such a pair then has its motion defined relative to
a fixed ground point. This fixed ground point does not have to be the same
as the World origin. A machine can have many such Ground-Body pairs and
must have at least one.

How to Connect a Joint Between Two Bodies
You represent relative motion of bodies with respect to one another by
connecting their Body blocks with Joints. You can connect a Body to one or
more Joints.

A Joint block is always connected to a specific point on the Body on either side
of the Joint. The specific point for anchoring a Joint on a Body is the origin
of a Body CS, and a Joint is therefore connected on one side to one Body at a
Body CS origin, and on the other side to the other Body at a Body CS origin.

Usually a Body is connected to a Joint on either side, so the default you saw
earlier in this tutorial for Body CSs in the Body dialog box is three Body
CSs: the CS at the center of gravity (CG) and two other CSs (CS1 and CS2).
But a Body at the end of a Body — Joint — ... — Body chain is connected
to only one Joint.

Revolute Joint for the Simple Pendulum
In spite of the complexity of the concepts implicit in a Joint, the actual
configuration of a Joint block is fairly simple. Here you insert and configure
one revolute Joint block between the Ground and Body blocks you’ve already
put into the model window.

2-21

2 Building and Visualizing Simple Machines

A Simple Pendulum Connected to Ground by a Revolute

Configuring the Revolute Joint Block. The geometry of the Joint
connection is shown in the figure preceding. The ground point at (3,4,5)
and the CS1 at (3,4,5) are actually the same point in space, but have been
separated in the figure for clarity. The revolute rotation axis is along the
+z direction:

1 Open the Joints library in the block library.

2 Drag and drop a Revolute block into your model window.

3 Rotate the Revolute block so that you can connect the base (B) side of the
Joint to the Ground block and the follower (F) side of the Joint to the Body
block. Make the two connections.

2-22

Building a Simple Pendulum

4 Open the Revolute dialog box. In the Parameters area, on the Axes pane,
configure the rotation axis to the World z-axis:

a Enter [0 0 1] under Axis of Action [x y z].

b Leave the Reference CS at WORLD.

c Ignore the Advanced tab.

Note several important things:

• Under Connection parameters, the Current base is located at
GND@Ground, which is the Grounded CS associated with the Ground
block located at (3,4,5) in World.

• Under Connection parameters, the Current follower is located at
CS1@Body, which is the CS1 on Body1 located at (3,4,5) in World.

• This Joint’s directionality runs from Ground to Body along the +z-axis.

5 Close the Revolute dialog box.

2-23

2 Building and Visualizing Simple Machines

Congratulations — you have now finished the simplest possible model of
a machine: a connected block diagram of Ground–Joint–Body. Your model
window should look like this.

Adding a Sensor and Starting the Simulation
To measure the motion of the pendulum as it swings, you need to connect one
or more Simulink Scope blocks to your model. The SimMechanics library
of Actuators and Sensor blocks gives you the means to input and output
Simulink signals to and from SimMechanics models. Sensors allow you to
watch the mechanical motion once you start the simulation, as the following
explain:

• “Connecting and Configuring the Pendulum Sensor” on page 2-24

• “Configuring the Machine Environment and Configuration Parameters”
on page 2-26

• “Starting and Interpreting the Motion” on page 2-27

Connecting and Configuring the Pendulum Sensor
In this example, you measure the angular motion of the revolute joint:

1 In the block library, open the Sensors and Actuators library. Drag and drop
a Joint Sensor block into your model window.

2-24

Building a Simple Pendulum

2 Open the Revolute block. Change Number of sensor/actuator ports
from 0 to 1 using the spinner menu. An open connector port appears on
the side of Revolute. Close Revolute.

3 Connect this connector port to the connector port on the Joint Sensor block.
The open connector port changes to solid .

4 Open Joint Sensor. Select the Angle and the Angular velocity check
boxes. Leave the other defaults. Close the Joint Sensor block.

5 Open the Simulink Library Browser. From the Sinks library, drag and drop
a Scope block and an XY Graph block into your model window. From the
Signal Routing library, drag and drop a Mux block as well. Connect the
Simulink outports > on the Joint Sensor block to the Scope and XY Graph
blocks as shown.

The lines from the outports > to the Scope and XY Graph blocks are normal
Simulink signal lines and can be branched. You cannot branch the lines

2-25

2 Building and Visualizing Simple Machines

connecting SimMechanics blocks to each another at the round connector
ports .

6 Save your model for future reference as spen.mdl.

You now need to configure the global parameters of your model before you
can run it.

Configuring the Machine Environment and Configuration
Parameters
The Configuration Parameters dialog box is a standard feature of
Simulink. Reset its entries for this model to obtain more accurate simulation
results.

1 In the Simulink menu bar, open the Simulation menu and click
Configuration Parameters to open the Configuration Parameters
dialog.

2 Select the Solver node of the dialog. Under Solver options, change
Relative tolerance to 1e-6 and Absolute tolerance to 1e-4.

If you want the simulation to stop after a finite time, change Stop time to
a finite number. The pendulum period is approximately 1.6 seconds.

3 Close the Configuration Parameters dialog box.

A special feature of SimMechanics models is the Machine Environment block.

1 Open your block diagram’s Machine Environment block dialog.

Note the default Gravity vector, [0 -9.81 0] m/s2, which points in
the -y direction, as shown in the figure Equivalent Ellipsoid of Simple
Pendulum with Body Coordinate Systems on page 2-17. The gravitational
acceleration g = 9.81 m/s2.

2-26

Building a Simple Pendulum

2 Close the Machine Environment dialog.

Starting and Interpreting the Motion
You can now start your simulation and watch the pendulum motion via the
Scope and XY Graph blocks:

1 Open the XY Graph block dialog box. Set the following parameters.

Parameter Value

x-min 0

x-max 200

y-min -500

y-max 500

Leave Sample time at default and close the dialog.

2-27

2 Building and Visualizing Simple Machines

2 Open the Scope block and start the model. The XY Graph opens
automatically when you start the simulation.

3 View the full motion of both angle and angular velocity (in degrees and
degrees per second, respectively) as functions of time in Scope. Click
Autoscale if the motion is not fully visible.

The motion is periodic but not simple harmonic (sinusoidal), because the
amplitude of the swing is so large (180 degrees from one turning point to
the other). Note that the zero of angle is the initial horizontal angle, not
the vertical. The zeros of motion are always the initial conditions.

The XY Graph shows the angle versus angular velocity, with no explicit time
axis. These two variables trace out a figure similar to an ellipse, because of
the conservation of total energy E:

1
2

1
2

J
d
dt

mgh E
θ

θ⎛
⎝⎜

⎞
⎠⎟

+ ∗ − = =(sin) constant

where J = Izz + mL2/4 is the inertial moment of the rod about its pivot point
(not the center of gravity). The two terms on the left side of this equation

2-28

Building a Simple Pendulum

are the kinetic and potential energies, respectively. The coordinate-velocity
space is the phase space of the system.

Phase Space Plot of Simple Pendulum Motion: Angular Velocity Versus Angle

The directionality of the Revolute Joint assumes that the rotation axis lies in
the +z direction. Looking at the pendulum from the front, follow the figures

• A Ground Point Relative to World on page 2-13

• Equivalent Ellipsoid of Simple Pendulum with Body Coordinate Systems
on page 2-17

• A Simple Pendulum Connected to Ground by a Revolute on page 2-22

Positive angular motion from this perspective is counterclockwise, following
the right-hand rule.

The next tutorial walks you through visualizing and animating this same
simple pendulum model.

2-29

2 Building and Visualizing Simple Machines

Visualizing a Simple Pendulum
In this section, you learn how to view the swinging pendulum rod of the model
introduced in the last section using the SimMechanics visualization window.
Use your saved spen.mdl model, or use the mech_spen model in the Demos
library.

SimMechanics supports a customized MATLAB Graphics-based window for
visualizing machines. This tool displays a machine by rendering its bodies.
The bodies can be displayed in two ways, by equivalent ellipsoids and by
closed surfaces (convex hulls) enveloping the bodies’ coordinate systems.

Note You can find more on visualizing and animating machine models in
Chapter 6, “Visualizing and Animating Machines”.

Consult the MATLAB Graphics documentation for more about its standard
features.

This section explains how to visualize your pendulum using either body
rendering. You can view the pendulum before you start and, separately,
choose to animate it during simulation as well:

• “Rendering the Bodies” on page 2-31

• “Visualizing with MATLAB Graphics” on page 2-32

Starting Visualization
The first step is to open the Configuration Parameters dialog from the
Simulation menu of your model window:

1 On the Simulink menu bar, open the Simulation menu and select the
Configuration Parameters entry. The Configuration Parameters
dialog appears. Select the SimMechanics node at the lower left.

2-30

Visualizing a Simple Pendulum

2 To view the pendulum in its static initial state, select the Display
machines after updating diagram check box.

To animate the pendulum visualization while the simulation is running,
select the Show animation during simulation check box as well.

3 Click OK. Select Update Diagram from the Edit menu to open the
visualization window.

Rendering the Bodies
The information that you use to specify body properties in a SimMechanics
model is enough to render each body in certain simplified ways. SimMechanics
does not have the information about the bodies needed to render their full
geometries.

2-31

2 Building and Visualizing Simple Machines

Equivalent Ellipsoids
A rigid body has a unique equivalent ellipsoid, a homogeneous solid ellipsoid
with the same inertia tensor. For more about this rendering for rigid bodies,
see “Rendering Body Shapes in SimMechanics” on page 6-5.

Because the rod has an axis of symmetry, the x-axis in this case, two of
its three generalized radii are equal: ay = az. The generalized radii of the

equivalent ellipsoid are ax = 5 3 2/ (/)L = 0.646 m and ay = az = 5 2(/)r =
1.12 cm.

Convex Hulls
Every Body has at least one Body coordinate system (CS) at the CG. A Body
also has one or more extra Body CSs for the attached Joints, as well as
possible Actuators and Sensors. Each Body CS has an origin point, and
the collection of all these points, in general, defines a volume in space. The
minimum outward-bending surface enclosing such a volume is the convex
hull of the Body CSs, and this is the alternative way that SimMechanics
has to render a body.

You created the pendulum body with only two Body CSs, CG and CS1. The
convex hull for the pendulum rod is thus a line joining the two Body CS
origins, the minimum connecting figure.

Choosing the Body Rendering
You can choose which displayed rendering of the pendulum rod or any
machine bodies SimMechanics uses in the special SimMechanics menu of
the visualization window. In the Machine Display submenu, choose Convex
Hulls or Ellipsoids.

Visualizing with MATLAB Graphics
The MATLAB Graphics-based visualization tool is built into SimMechanics.
To open it or to synchronize it at any time with your model, select Update
Diagram in your model window’s Edit menu.

2-32

Visualizing a Simple Pendulum

Rendering the Pendulum as a Convex Hull
The displayed figure depends on the body rendering you choose. If you chose
Convex Hulls in the SimMechanics > Machine Display menu, a convex
hull appears.

Pendulum Rod Rendered as a Convex Hull

2-33

2 Building and Visualizing Simple Machines

You can change the viewpoint and manipulate the image using standard
MATLAB Graphics techniques. Consult “Introducing the SimMechanics
Visualization Window” on page 6-11 as well. Experiment with the
SimMechanics menu’s settings to see various ways of displaying the
pendulum.

When you start the model, the body in the graphics window moves in step
with the simulation.

Rendering the Pendulum as an Equivalent Ellipsoid
To render the pendulum as an equivalent ellipsoid, follow the previous steps,
but change the Machine Display choice:

1 Open the SimMechanics menu and select Machine Display.

2 In the submenu, select Ellipsoids.

The SimMechanics machine display changes. The equivalent ellipsoid
looks like this.

2-34

Visualizing a Simple Pendulum

Pendulum Rod Rendered as an Equivalent Ellipsoid

Modeling and Visualizing More Complex Machines
The next tutorial shows how to create, run, and visualize a model for a more
complex machine, a four bar mechanism. To configure Ground, Body, and
Joint blocks now means repeating and expanding upon the three blocks of
the first two tutorials.

2-35

2 Building and Visualizing Simple Machines

Four Bar Mechanism
In this tutorial, you build a model of a planar, four bar mechanism and
practice using some of the important SimMechanics features:

• “Configuring the Mechanical Environment” on page 2-38

• “Setting Up the Block Diagram” on page 2-40

• “Configuring the Ground and Joint Blocks” on page 2-43

• “Configuring the Body Blocks” on page 2-47

• “Sensing Motion and Running the Model” on page 2-52

You are urged to work through “Building a Simple Pendulum” on page 2-11
and “Visualizing a Simple Pendulum” on page 2-30 before proceeding with
this section. Learn more about how to position and orient bodies in Chapter 3,
“Representing Motion”.

The machine consists of three moving bars of homogeneous steel, two
connected at one end each to ground points and a third crossbar connecting
the first two. The base acts as an immobile fourth bar, with a Ground at each
end. The machine forms a single closed loop, and its motion is confined to
two dimensions.

2-36

Four Bar Mechanism

A Four Bar Mechanism

The elementary parts of the machine are the bodies, while the revolute joints
are the idealized rotational degrees of freedom (DoFs) at each body-to-body
contact point. The bodies and the joints expressing the bodies’ relative
motions must be translated into corresponding SimMechanics blocks. If you
want, you can add elaborations such as Constraints, Drivers, Sensors, and
Actuators to this essential block diagram.

Counting the Degrees of Freedom
The three moving bars are constrained to move in a plane. So each bar has
two translational and one rotational DoFs, and the total number of machine
DoFs, before counting constraints, is 3*(2+1) = 9.

Because the motion of the bars is constrained, however, not all of these nine
DoFs are independent:

• In two dimensions, each connection of a body with another body or with a
ground point imposes two restrictions (one for each coordinate direction).

2-37

2 Building and Visualizing Simple Machines

Such a restriction effectively eliminates one of the two body ends as
independently moving points, because its motion is determined by the next
body’s end.

• There are four such body-body or body-ground connections and therefore
eight restrictions implicit in the machine’s geometry.

The eight restrictions on the nine apparent DoFs reduce the DoFs to one,
9 - 8 = 1. There are four rotational DoFs between bars or between bars and
grounds. But three of these are dependent. Specifying the state of one
rotational DoF fully specifies the other three.

Configuring the Mechanical Environment
Open a new blank model window from the SimMechanics library. From the
Bodies library of SimMechanics, drag in and drop a Machine Environment
block and a Ground block. Enable the Ground’s Machine Environment port
and connect the environment block to the Ground.

First you need to configure the machine’s mechanical settings. Open the
Machine Environment block. The block dialog box appears.

2-38

Four Bar Mechanism

The Machine Environment Dialog Box Panes
Click the four tabs in succession to display each pane.

Pane Function

Parameters Controls general settings for mechanical simulations

Constraints Sets constraint tolerances and how constraints are
interpreted

Linearization Controls how SimMechanics models are linearized
with Simulink

Visualization Chooses whether or not to visualize the machine

Note some important features of this dialog box:

2-39

2 Building and Visualizing Simple Machines

• The Gravity vector field specifies the magnitude and direction of
gravitational acceleration and sets the vertical or up-down direction.

• The Linear and Angular assembly tolerance fields are also set here.
Change Angular assembly tolerance to 1e-3 deg (degrees). (See
“Setting Assembly Tolerances” on page 5-5.)

• Leave the other defaults, except Visualization. In that pane, select the
Visualize machine check box.

Close the dialog by clicking OK.

Starting Visualization

Note If possible, open the visualization window before building a model. With
it, you can keep track of your model components and how they are connected,
as well as correct mistakes.

To visualize the bodies as you build the machine, go to the SimMechanics
node of the Configuration Parameters dialog:

1 Select the Update machine visualization on update diagram check
box. If you want to animate the simulation later when you run the model,
select the Animate machine during simulation check box as well.
Click OK or Apply.

Then select Update Diagram from the Edit menu. The window opens.

2 In the SimMechanics menu, select Machine Display, then Ellipsoids.

As you add and change bodies in your model, you can update the machine
display in your window at any time by updating your diagram.

Setting Up the Block Diagram
In this set of steps, you create Bodies, position them, connect them with
Joints, then configure the Body and Joint properties. The Body dialog boxes
give you many ways to represent the same machine in the same physical
state. This section explains one way.

2-40

Four Bar Mechanism

Alternative, equivalent ways of configuring Bodies are discussed in “Body
Coordinate Systems” on page 4-13.

MAT-File Data Entry
The geometric and mass properties you need to specify for the Grounds and
Bodies in this model are listed in the tables of the following two sections,
“Configuring the Ground and Joint Blocks” on page 2-43 and “Configuring the
Body Blocks” on page 2-47.

Instead of typing the numerical values of these properties into the dialog
boxes, you can load the variable set you need into the workspace by entering

load fourbar_data

at the MATLAB command line. The variable name for each property is given
in the tables. Just enter the appropriate variable names in the appropriate
fields as you come to them in the dialog boxes.

Block Diagram Setup
Your model already has one environment block and one ground block.
Assemble the full model with these steps:

1 In the block library, open the Bodies library. Drag and drop another Ground
block and three Body blocks into the new model window. Close the Bodies
library.

2 From the Joints library, drag and drop four Revolute blocks into the model
window.

3 Rotate and connect the blocks in the pattern shown in the following figure
or with an equivalent block diagram topology.

Use the block names shown in this figure for later consistency.

2-41

2 Building and Visualizing Simple Machines

Connected Environment, Ground, Body, and Joint Blocks for the Four Bar

Block Diagram Topology. The topology of the block diagram is the
connectivity of its elements. The elements are the Bodies and Grounds,
connected by the Joints. Unlike the model of “Building a Simple Pendulum”
on page 2-11, the four bar mechanism is a closed-loop machine. The two
Ground blocks represent points on the same absolute, immobile body, and
they close the loop of blocks. The simple pendulum has only one ground and
does not close its block connections.

To maintain consistent Body motion direction, make sure the Body coordinate
system (CS) port pairs on each Body follow the sequence CS1-CS2, CS1-CS2,
etc., for each bar, moving from Ground_1 to Ground_2, from right to left, as
shown. To make the Joints consistent with the Body motion, the base-follower
pairs B-F, B-F, etc., should follow the same right-to-left sequence.

2-42

Four Bar Mechanism

Configuring the Ground and Joint Blocks
Now configure the Ground blocks with the data from the following table.
Grounded coordinate systems (CSs) are automatically created.

Geometry of the Four Bar Base
This table summarizes the geometry of ground points.

Geometric Properties of the Four Bar Grounds

Property Value MAT-File Variable

Ground_1 point (m) [0.434 0 0.04] gpoint_1

Ground_2 point (m) [-0.433 0 0.04] gpoint_2

The base of the mechanism has these measurements:

• The base is horizontal, with length 86.7 cm.

• Ground_1 represents the ground point 43.3 cm to the right of the World
CS origin.

• Ground_2 represents the ground point 43.4 cm to the left of the World
CS origin.

• The bottom revolutes are 4 cm above the origin (x-z) plane.

Setting Up the Grounds
To represent ground points on the immobile base, you need to configure the
Ground blocks. Use the variable names if you’ve loaded fourbar_data.mat
into your workspace:

1 Open Ground_1 and enter [0.434 0 0.04] or gpoint_1 in the Location
field.

2 Open Ground_2 and enter [-0.433 0 0.04] or gpoint_2 in the Location
field.

3 Leave both pull-down menus for units at default m (meters).

2-43

2 Building and Visualizing Simple Machines

Configuring the Revolute Joints
The three nongrounded bars move in the plane of your screen (x-y plane), so
you need to make all the Revolute axes the z-axis (out of the screen):

1 Open each Revolute’s dialog box in turn. In its Parameters area, note on
the Axes pane that the z-axis is the default: Axis of Action is set to [0 0
1] in each, relative to Reference CS WORLD. Leave these defaults.

A Revolute block contains only one primitive joint, a single revolute DoF. So
the Primitive is automatically revolute. Its name within the block is R1.

2 Leave these Revolute joint block defaults and ignore the Advanced tab.

The Body CS and base-follower joint directionality should be set up as shown
in the block diagram of the figure Connected Environment, Ground, Body, and
Joint Blocks for the Four Bar on page 2-42. In the Connection parameters
area, the default Joint directionality for each Revolute automatically follows
the right-to-left sequence of Grounded and Body CSs:

2-44

Four Bar Mechanism

• Revolute1: Base to follower: GND@Gound_1 to CS1@Bar1

• Revolute2: Base to follower: CS2@Bar1 to CS1@Bar2

• Revolute3: Base to follower: CS2@Bar2 to CS1@Bar3

• Revolute4: Base to follower: CS2@Bar3 to GND@Ground_2

In this Joint directionality convention,

• At each Joint, the leftward Body moves relative to the rightward Body.

• The rotation axis points in the +z direction (out of the screen).

• Looking at the mechanism from the front in the figure, A Four Bar
Mechanism on page 2-37, the positive rotational sense is counterclockwise.
All Joint Sensor and Actuator data are interpreted in this sense.

2-45

2 Building and Visualizing Simple Machines

2-46

Four Bar Mechanism

Configuring the Body Blocks
Setting the Body properties is similar for each bar, but with different
parameter values entered into each dialog box:

• Mass properties

• Lengths and orientations

• Center of gravity (CG) positions

• Body coordinate systems (CSs)

In contrast to the first tutorial, where you specify Body CS properties with
respect to the absolute World CS, in this tutorial, you specify Body CS
origins on the bars in relative coordinates, displacing Bar1’s CS1 relative to
Ground_1, Bar2’s CS1 relative to Bar1, and so on, around the machine loop.
You can refer the definition of a Body CS to three types of coordinate systems:

• To World

• To the other Body CSs on the same Body

2-47

2 Building and Visualizing Simple Machines

• To the Adjoining CS (the coordinate system on a neighboring body or
ground directly connected by a Joint to the selected Body CS).

The components of the displacement vectors for each Body CS origin continue
to be oriented with respect to the World axes. The rotation of each Body’s CG
CS axes is also with respect to the World axes, in the Euler X-Y-Z convention.

The following three tables summarize the body properties for the three bars.

Bar1 Mass and Body CS Data (MKS Units)

Property Value Variable Name

Mass 5.357 m_1

Inertia tensor [1.07e-3 0 0;
0 0.143 0;
0 0 0.143]

inertia_1

CG Origin [0.03 0.282 0] from World
in axes of CS1

cg_1

CS1 Origin [0 0 0] from World in axes of
Adjoining

cs1_1

CS2 Origin [0.063 0.597 0] from World
in axes of CS1

cs2_1

CG Orientation [0 0 83.1] from WORLD in
convention Euler X-Y-Z

orientcg_1

Bar2 Mass and Body CS Data (MKS Units)

Property Value Variable Name

Mass 9.028 m_2

Inertia tensor [1.8e-3 0 0;
0 0.678 0;
0 0 0.678]

inertia_2

CG Origin [-0.427 0.242 0] from World
in axes of CS1

cg_2

2-48

Four Bar Mechanism

Bar2 Mass and Body CS Data (MKS Units) (Continued)

Property Value Variable Name

CS1 Origin [0 0 0] from World in axes of
Adjoining

cs1_2

CS2 Origin [-0.87 0.493 0] from World
in axes of CS1

cs2_2

CG Orientation [0 0 29.5] from WORLD in
convention Euler X-Y-Z

orientcg_2

Bar3 Mass and Body CS Data (MKS Units)

Property Value Variable Name

Mass 0.991 m_3

Inertia tensor [2.06e-4 0 0;
0 1.1e-3 0;
0 0 1.1e-3]

inertia_3

CG Origin [-0.027 -0.048 0] from
World in axes of CS1

cg_3

CS1 Origin [0 0 0] from World in axes of
Adjoining

cs1_3

CS2 Origin [0 0 0] from World in axes of
Adjoining

cs2_3

CG Orientation [0 0 60] from World in
convention Euler X-Y-Z

orientcg_3

Configuring the Bodies
Here are the common steps for configuring the Body dialogs of all three bars.
See the three preceding tables for Body dialog box mass property (mass and
inertia tensor) entries. The units are MKS: lengths in meters (m), masses in
kilograms (kg), and inertia tensors in kilogram-meters2 (kg-m2).

1 Open all three Body dialogs for each bar. Enter the mass properties for
each from the tables in the Mass and Inertia fields.

2-49

2 Building and Visualizing Simple Machines

2 Now work in the Body coordinate systems area, the Position pane:

a Set the Translated from Origin of menu, for each Body CS on each
bar, to WORLD.

b Leave units as default m (meters).

3 Set the Body CS properties for each Body CS on each bar from the data of
the preceding tables:

a Enter the Body CS origin position data for CG, CS1, and CS2 on each
bar from the tables or from the corresponding MAT-file variables.

b Set the Components in Axes of menu entries for each Body CS on each
bar according to the values in the tables.

4 Select the Orientation pane by clicking its tab:

a Enter the Orientation Vector for the CG on each bar from the tables
or from the corresponding MAT-file variables.

b Choose WORLD for Relative CS in each case.

c Leave the other fields in their default values.

2-50

Four Bar Mechanism

2-51

2 Building and Visualizing Simple Machines

The front view of the four bar mechanism, with the bodies rendered as
equivalent ellipsoids, looks like this:

Sensing Motion and Running the Model
You finish building your model by setting initial conditions and inserting
Sensors.

Before you start a machine simulation, you need to set its kinematic state
or initial conditions. These include positions/angles and linear/angular
velocities. This information, the machine’s initial kinematic state, is discussed
further in “Kinematics and the Machine’s State of Motion” on page 3-2 and
“Modeling Actuators” on page 4-45.

You can sense motion in any model in two basic ways: sensing bodies or
sensing joints. Here you sense Joint motion, using Joint Sensor blocks and
feeding their Simulink signal outputs to Scope blocks.

2-52

Four Bar Mechanism

Caution Because they are immobile, ground points cannot be moved, nor
do they have any motion to measure.

Therefore, you cannot connect Ground blocks to Actuator or Sensor blocks.

Connecting the Joint Sensors
To sense the motion of the Revolute2 and Revolute3 blocks,

1 From the Sensors & Actuators library, drag and drop two Joint Sensor
blocks into the model window. Drag Joint Sensor next to Revolute2 and
Joint Sensor1 next to Revolute3.

2 Before you can attach a Joint Sensor block to a Revolute block, you need
to create a new open round connector port on the Revolute. Open
Revolute2’s dialog box:

a In the Connection parameters area in the middle, adjust the spinner
menu Number of sensor/actuator ports to the value 1. Click OK.

A new connector port appears on Revolute2.

b Connect this connector port to the open round connector port on Joint
Sensor.

3 Now repeat the same steps with Revolute3:

a Create one new connector port on Revolute 3.

b Connect this port to Joint Sensor1.

4 Be sure to connect the outports > of the Sensor blocks to a Simulink Sink
block. These outports are normal Simulink signals.

Graphical Plot of Joint Motion with a Scope Block
Here you can view the Joint Sensor measurements of Revolute2 and
Revolute3’s motions using a Scope block from the Simulink Sinks library:

2-53

2 Building and Visualizing Simple Machines

1 Open the Simulink Library Browser. From the Sinks library, drag and drop
a Scope block into your model window in between Joint Sensor and Joint
Sensor1 blocks. Rename the Scope block “Angle.”

2 Open the Angle block. In this scope window’s toolbar, open the Parameters
box. Under Axes, reset Number of axes to 2. Click OK. A second inport >
appears on the Angle block.

3 Expand the scope window for ease of viewing.

4 Connect the Joint Sensor and Joint Sensor1 block outports > to the Angle
block inports >.

5 Open Joint Sensor and Joint Sensor1:

a In the Measurements area, Connected to primitive is set to R1
in both blocks, indicating the first and only primitive revolute inside
Revolute2 and Revolute3 to which each Sensor can be connected.

b Select the Angle check box to measure just the angle. Leave the units in
default as deg (degrees). The Simulink line will contain one scalar.

2-54

Four Bar Mechanism

Your completed model should look similar to the mech_four_bar demo model.

Caution Sensor and Actuator blocks are the only blocks that can connect
SimMechanics blocks to normal Simulink blocks.

Configuring and Running the Simulation
Now take the final steps to prepare and start the model:

1 In the model window Simulation menu, select Configuration
Parameters:

a In the Solver node, change Absolute tolerance to 1e-6.

b Leave the other defaults and click OK.

2-55

2 Building and Visualizing Simple Machines

2 Now run the model by clicking Start in the Simulink toolbar. The four bar
machine will fall under the influence of gravity.

Note some features of the simulation:

• In this example, the machine starts from rest, with the initial velocities at
zero. Thus the initial state of the four bar machine is just the geometric
state that you set up in “Setting Up the Block Diagram” on page 2-40.

• The assembly at first falls over to the right, and the Revolute2 angle
decreases.

• Bar3 turns all the way around, and Bar2 and Bar1 turn back to the left.
The Revolute2 angle reverses direction. Revolute3 sweeps through a
complete turn. Angles are mapped to the interval (-180o,+180o] and exhibit
discontinuities.

• The motion repeats periodically, as there is no friction.

2-56

Four Bar Mechanism

Animation
If you leave your visualization window open at the time you start the
simulation and select the Animate machine during simulation check box
in the SimMechanics node of the Configuration Parameters dialog, the
visualized machine moves in step with the simulation.

You can now compare the animated motion with the Scope plots of the
Revolute2 and Revolute3 angles.

For More About the Four Bar Machine
The four bar system is also discussed in the context of advanced SimMechanics
features and methods: “Modeling Joints” on page 4-20, “Checking Model
Validity” on page 4-74, “Finding Forces from Motions” on page 8-7, “Trimming
Mechanical Models” on page 8-18, and “Linearizing Mechanical Models” on
page 8-32.

2-57

2 Building and Visualizing Simple Machines

2-58

3

Representing Motion

This chapter explains how SimMechanics represents body position,
orientation, and motion. It connects mechanics concepts commonly used in
physics and engineering with specific SimMechanics implementations. The
last section is a case study on configuring a SimMechanics Body block to
represent position and orientation.

This chapter assumes some familiarity with mechanics and vector analysis.
You should work through it as a single unit. Consult “References” on page
3-4 for more.

Kinematics and the Machine’s State
of Motion (p. 3-2)

How SimMechanics implements
kinematic states

Body Motion in SimMechanics
(p. 3-4)

How SimMechanics represents
translational and rotational motion

How SimMechanics Represents
Body Orientation (p. 3-11)

Ways to represent body rotations
in SimMechanics and convert one
representation into another

Orienting a Body and Its Coordinate
Systems (p. 3-18)

Examples of configuring the
geometric properties of a body

3 Representing Motion

Kinematics and the Machine’s State of Motion
Kinematics is the description of a machine’s motion without regard to
forces, torques, and the mass properties of bodies. Because accelerations
are proportional to forces and torques, if you know the mass properties of
the bodies and the forces and torques applied to them, you need only the
initial positions and their first derivatives (velocities) to integrate a machine’s
motion.

Degrees of Freedom
The relative position and orientation of a body with respect to a neighbor
constitute up to six degrees of freedom (DoFs). The fundamental DoFs are
translational (one body sliding relative to another along a prismatic axis) and
rotational (one body rotating relative to another about a revolute axis, or one
body pivoting relative to another about a spherical pivot point).

SimMechanics represents DoFs by Joint blocks connected between Body
blocks. Bodies without Joints have no DoFs in SimMechanics and acquire
DoFs only by having Joints connected to them. SimMechanics represents the
machine’s motion state by the positions (prismatics), angles (revolutes or
sphericals), and their first derivatives with respect to time (velocities).

The State of Motion
The state of motion of a mechanical system is the set of the instantaneous
positions and orientations of all its bodies and their linear and angular
velocities. In SimMechanics, body positions/orientations are relative: one
body’s state is specified with respect to its neighbors. The absolute positions
and velocities of the bodies’ states are determined via the machine’s
connections to one or more grounds. These grounds are at rest in World,
although they do not have to coincide with the World origin.

Home, Initial, and Assembled Configurations
When you start your model, SimMechanics configures your machines in
preparation for motion by stepping them sequentially through three states.

• SimMechanics starts by analyzing the machines in their home
configurations. A machine in its home configuration has all its bodies

3-2

Kinematics and the Machine’s State of Motion

positioned and oriented purely according to the Body block dialog data.
All body velocities are zero.

• From the model’s initial condition actuators, SimMechanics then applies
initial condition (position, orientation, and velocity) data to the joints of the
model, changing its machines to their initial configurations.

• Finally, SimMechanics assembles any disassembled joints in the model,
transforming the machines to their assembled configurations. While
doing this, it holds fixed any positions and orientations specified by initial
condition actuators.

The assembled configuration is the final premotion machine state.

Updating your SimMechanics diagram (from the Edit menu or by pressing
Ctrl+D) resets the model to its currently valid home configuration.

For More Information
For a detailed explanation of how to represent body motions, see “Body Motion
in SimMechanics” on page 3-4.

Chapter 4, “Modeling Mechanical Systems” contains complete information on
machine modeling in SimMechanics.

• “Modeling Rigid Bodies” on page 4-12

• “Modeling Joints” on page 4-20

• “Specifying Initial Positions and Velocities” on page 4-57

• “Counting Degrees of Freedom” on page 4-77

“How SimMechanics Works” on page 5-15 enumerates the complete
SimMechanics simulation steps.

Refer also to the mech_stateVectorMgr command reference for identification
of DoFs in SimMechanics and elaboration of the machine state.

3-3

3 Representing Motion

Body Motion in SimMechanics
This section summarizes observer coordinate systems, measuring body motion,
and how SimMechanics represents the state of a body’s motion. It assumes a
basic knowledge of vector algebra and analysis. Goldstein [2]; Murray, Li, and
Sastry [3]; and Shuster [4] present coordinate transformations, rotations, and
rigid body kinematics in detail. The preceding section, “Kinematics and the
Machine’s State of Motion” on page 3-2, should also be helpful.

How to Read This Section
Each topic in this section builds on the preceding one. Therefore, you should
scan linearly through the whole section, then read it in detail.

• “Reference Frames and Coordinate Systems” on page 3-5

• “Relating Coordinate Systems in Relative Motion” on page 3-6

• “Observing Body Motion in Different Coordinate Systems” on page 3-7

• “Representing Body Translations and Rotations” on page 3-9

References

[1] Bell, E. T., “An Irish Tragedy: Hamilton (1805-1865),” in Men of
Mathematics, New York, Simon & Schuster, 1937.

[2] Goldstein, H., Classical Mechanics, Second Edition, Reading,
Massachusetts, Addison-Wesley, 1980.

[3] Murray, R. M., Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation, Boca Raton, Florida, CRC Press, 1994.

[4] Shuster, M. D., “Spacecraft Attitude Determination and Control,” in V. L.
Piscane and R. C. Moore, eds., Fundamentals of Space Systems, New York,
Oxford University Press, 1994.

3-4

Body Motion in SimMechanics

Overview of Machine Motion
Machines are composed of bodies, which have relative degrees of freedom
(DoFs). Bodies have positions, orientations, mass properties, and sets of Body
coordinate systems. Joints represent the motions of the bodies.

• A machine’s geometry consists of its static body features before starting a
simulation: positions, orientations, and Body coordinate systems.

• A machine’s kinematics consist of all degrees of freedom (DoFs) of all
bodies: the positions/orientations and their derivatives of at any instant
during the machine’s motion.

The full description of a machine’s motion includes not only its kinematics,
but also specification of its observers, who define reference frames (RFs) and
coordinate systems (CSs) for measuring the machine motion.

All vectors and tensors, unless otherwise noted, are represented by Cartesian
matrices with three and nine, respectively, spatial components measured by
rectangular coordinate axes.

Reference Frames and Coordinate Systems
The reference frame of an observer is an observer’s state of motion, which has
to be measured by other observers. SimMechanics simulates a machine’s
motion using its Newtonian dynamics, which takes its simplest form in the
special set of inertial RFs, the set of all frames unaccelerated with respect to
inertial space. Within an RF, you can pick any point as a coordinate system
origin, then set up Cartesian (orthogonal) axes there.

SimMechanics uses a master inertial RF called World. A CS origin and
axis triad are also defined in World. World can mean either the RF or the
CS, although in most contexts, it means the World coordinate system. For
SimMechanics, World defines absolute rest and a universal coordinate origin
and axes independent of any bodies and grounds in a machine.

A common synonym for coordinate system is working frame.

3-5

3 Representing Motion

Relating Coordinate Systems in Relative Motion
Now add a second CS, called O, whose origin is translating with respect to
the World origin and whose axes are rotating with respect to the World axes.
Later in this section, this second CS is identified with a CS fixed in a moving
body. (See “Representing Body Translations and Rotations” on page 3-9.)

A vector C represents the origin of O. Its head is at the O origin and its tail is
at the World origin. The O origin moves as an arbitrary function of time C(t).

The orthogonal unit vectors {u(x), u(y), u(z)} define the coordinate axes of O.

• This set is oriented with respect to the World coordinate axes X, Y, Z, with
unit vectors {e(x), e(y), e(z)}. The orientation changes with time.

• You can express the set {u(x), u(y), u(z)} as a linear combination of the
basis {e(x), e(y), e(z)} in terms of nine coefficients. These are relationships
between vectors (not vector components) and are independent of the
reference frame and coordinate system.

u e e e

u e e

(x) (x) + (y) + (z)

(y) (x) + (y) +
xx yx zx

xy yy

=

=

R R R

R R RR

R R R
zy

xz yz zz

(z)

(z) (x) + (y) + (z)

e

u e e e=

• You obtain the components of the u’s in World by projecting the u’s on to
the e’s by scalar products. The time-dependent R coefficients represent the

3-6

Body Motion in SimMechanics

orientation of the u’s with respect to the e’s. You can use the labels (1,2,3)
as equivalents for (x,y,z).

u (x) , u (x) , u (x)

u (y) , u (y) , u
x xx y yx z zx

x xy y yy

= = =

= =

R R R

R R zz zy

x xz y yz z zz

(y)

u (z) , u (z) , u (z)

=

= = =

R

R R R

• The components of any vector v measured in World are e(i)·v. Represent
them by a column vector, vWorld. The components of v in O are u(i)·v.
Represent them by a column vector, vO. The two sets of components are
related by the matrix transformation vWorld = RWO·vO. The coefficients R
form a matrix whose columns are the components of the u’s in World:

R
R R R
R R R
R R R

R R R
R R R=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
11 12 13

21 22 23

31 32 33

xx xy xz

yx yy yz

RR R Rzx zy zz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

The orthogonality and unit length of the u’s guarantee that R is an
orthogonal rotation matrix satisfying RRT = RTR = I, the identity matrix.
RT is the transpose of R (switch rows and columns). Thus R-1 = RT.

• Rotations always follow the right-hand rule, so that det(R) = +1.

• You use rotation matrices in general to transform the components of any
vector from one CS representation to another, rotated CS representation.

Observing Body Motion in Different Coordinate
Systems
To the two observer CSs, World and O, now add a third point p in arbitrary
motion. p could represent a point mass, the center of gravity (CG) of an
extended body, or a point fixed in a moving rigid body, for example. The two
observers describe the motion of this point in different ways, related to one
another by time-dependent World-to-O coordinate transformations.

3-7

3 Representing Motion

The components of p are given by projecting it on to some CS axes. The
components of p as measured in World are a column vector pWorld and,
measured in O, are a column vector pO. The two descriptions are related by

p C pWorld World O= + ⋅R

Thus the motion as measured by pWorld, when transformed and observed by O
as pO, has additional time dependence arising from the motion of C and R.

Relating Velocities Observed in Different Coordinate Systems
Differentiate the relationship between pWorld and pO once with respect to
time. The result relates the velocity of p as measured by O to the velocity
as measured in World.

d dt d dt + (d dt) + (d dt) World World O Op C p p= ⋅ ⋅R R

The section “The Angular Velocity of a Body from Its Rotation Matrix” on page
3-9 explains how to express the third term in a simpler form.

3-8

Body Motion in SimMechanics

Representing Body Translations and Rotations
Next consider the special case essential for describing the rigid body motions
simulated by SimMechanics: the moving point p is fixed in the body itself.
Let O be the center of gravity coordinate system (CG CS) of an extended rigid
body (the origin of O at the CG itself) and let p be a point fixed somewhere
in the same body. This body-fixed point is denoted by b in this special case.
Because a moving body in general accelerates both translationally and
rotationally, the CG CS is noninertial.

The rotation matrix R now describes the rotational motion of the body in terms
of the rotation of the CG CS axes with respect to the World axes. Furthermore,
because b is now fixed in the body itself, it does not move in O: dbO/dt = 0. All
of its motion as seen by World is due implicitly to the motion of R and C.

The Angular Velocity of a Body from Its Rotation Matrix
Continue to identify O with the body CG CS and b as a point fixed in the
body. The vector components of b are observed by World as bWorld and by the
CG CS as bBody. In the body, the point is immobile: dbBody/dt = 0. Its velocity
observed by World is composed of the translational and rotational motion of
the entire rigid body.

d dt d dt + (d dt)World World Bodyb C b= ⋅R

Because RRT = I, (dR/dt)*RT + R(*dRT/dt) = 0. Insert RTR = I to the left of
bBody and define an antisymmetric matrix = +(dR/dt)*RT = -R*(dRT/dt).
Its components are ik = + j εijkωj.

Ω =
−

−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0
0

0

ω ω
ω ω
ω ω

z y

z x

y x

where ω is the body’s angular velocity in the World CS.

d dt d dt +

d
World World Body

Wor

b C b

C

= ⋅ ⋅

=

Ω R

 lld Bodydt + (ωω x R ⋅ b)

3-9

3 Representing Motion

The motion of bBody decomposes into the motion of the body’s CG plus the
angular rotation of bBody relative to the CG, all measured in World.

The relationship between time derivatives of a vector measured in World and
measured in the body holds generally. For any vector V,

d dt d dt + World Body WorldV V V() = () ωω x

The derivative of the angular velocity ω is the angular acceleration. It is the
same, whether measured in World or in the body, because ωω ωωx = 0.

The Permutation Symbol ε and the Vector Cross Product
The permutation symbol εijk is defined by

εijk= +1 if ijk is an even permutation (123 or any cyclic permutation thereof)

εijk= -1 if ijk is an odd permutation (321 or any cyclic permutation thereof)

εijk changes sign upon switching any two indices and vanishes if any two
indices are equal. The components of the cross (vector) product c = a X b of
two vectors a and b are

ci = jk εijkajbk

3-10

How SimMechanics Represents Body Orientation

How SimMechanics Represents Body Orientation
In SimMechanics, you represent a body’s orientation by specifying the
orientation of its center of gravity coordinate system (CG CS) axes relative to
some other set of axes, either the CS axes of an adjoining body or the World
CS axes. No reorientation is represented by “no rotation” or the rotational
identity.

A general rotation of a body in three dimensions has three independent
degrees of freedom. There are many ways to represent these degrees of
freedom. SimMechanics uses the following representations in the Body and
related Body Sensor and RotationMatrix2VR blocks. The block reference
pages for these blocks discuss block-specific details.

• “Axis-Angle Representation” on page 3-11

• “Quaternion Representation” on page 3-12

• “Rotation Matrix Representation” on page 3-12

• “Euler Angle Representation” on page 3-13

The rotation representations are equivalent and convertible to one another:

• “Converting Rotation Representations” on page 3-14

• “Converting the Angular Velocity” on page 3-17

Axis-Angle Representation
The axis-angle representation of a rotation is the most fundamental form.
Specify a rotation axis n, then rotate by the right-hand rule about that axis
by some angle θ. The vector n = (nx,ny,nz) is a three-component unit vector,
where n·n = 1. The axis n is sometimes called the eigenaxis.

SimMechanics does not make direct use of the axis-angle representation, but
it is the starting point for deriving other forms. It is also used extensively in
mechanical applications such as computer-aided design and robotics.

The axis-angle representation is usually written as a 4-vector: [nx ny nz θ]. Of
the four numbers, three are independent, because n·n = nx

2 + ny
2 + nz

2 = 1.
That is, n specifies only a direction, not a length.

3-11

3 Representing Motion

To describe continuous rotation in time, treat n and θ as functions of time.

Quaternion Representation
A quaternion represents a three-dimensional rotation as a four-component
row vector of unit length:

q n n n qx y z= () () () ()⎡⎣ ⎤⎦ = [, , sin sin , sin , cosθ θ θ θ2 2 2 2 qv s]]

with q*q = qv·qv + qs
2 = 1. This definition uses the axis-angle representation

defined above. The rotation angle about that axis is θ. To describe continuous
rotation in time, treat n and θ as functions of time. Unlike some rotation
representations, quaternions never become singular.

See Bell [1] and Shuster [4] for more about quaternions.

Rotation Matrix Representation
The axis-angle representation also defines the rotation matrix R in exponential
form R = exp(θ n·J), where the Jk are real, antisymmetric matrices, and n·J =
nxJ

1 + ny J2 + nz J3. The rotation matrix R is orthogonal: RRT = RTR = I.

The J matrices are related to the antisymmetric permutation symbol εijk.

J j
ik ijk() = ε

The exponential R is reduced to closed form by the Rodrigues identity:

R I= ⋅ = + ⋅ + ⋅ −exp() ()sin () (cos)θ θ θn J n J n J 2 1

where I is the identity matrix, and n·J is given by

n ⋅ =
−

−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

J
0

0
0

n n
n n
n n

z y

z x

y x

3-12

How SimMechanics Represents Body Orientation

The inverse of R is identical to its transpose RT. You can also obtain the
inverse by replacing θ with θ or by reversing the direction of n.

To describe continuous rotation in time, treat n and θ as functions of time.

Euler Angle Representation
An alternative representation for R is to rotate, in succession, about three
independent axes, by three independent Euler angles. A full rotation R
starting in World composes by multiplying the matrices successively on the
left:

RBW = R3*R2*R1

A full rotation R starting in a body CS composes by multiplying the matrices
successively on the right:

RWB = R1*R2*R3

The Euler angle convention is to

1 Rotate about one body coordinate axis (which rotates the other two).

2 Then rotate about a second body coordinate axis (rotated from its original
direction) not identical to the first.

3 Lastly, rotate about another body coordinate axis not identical to the second.

Thus there are 3*2*2 = 12 possible Euler angle rotation sequences. The
rotation axis sequences Z-X-Z and Z-Y-X are common. Rotation angles are
often labeled as θ1, θ2, θ3 or , θ, as the first, second, and third angles,
respectively. For example,

RBW = RX(θ1)*RY(θ2)*RZ(θ3)

RWB = RZ()*RX(θ)*RZ()

A two-dimensional rotation about a fixed axis requires one angle. For
example, rotating the x- and y-axes about the z-axis by is represented by

3-13

3 Representing Motion

RZ φ
φ φ
φ φ() =

−⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cos sin
sin cos

0
0

0 0 1

To describe continuous rotation in time, treat the Euler angles as functions
of time. The Euler angle representation is singular in certain limiting
situations. Such singularities are artifacts of the Euler angle form and have
no geometric or physical significance.

Converting Rotation Representations
Certain SimMechanics blocks make use of different rotation representations.

• The Body block makes direct use of the Euler angle, rotation matrix, and
quaternion representations.

• The Body Sensor block makes use of the rotation matrix.

• The RotationMatrix2VR block uses the rotation matrix and axis-angle
forms.

The four rotation representations presented in this section are equivalent.
You can represent a rotation equally well with any one of them. Some
applications, however, tend to favor one representation over the others, and
certain representations are singular in certain limits. It is helpful to know
how to convert the various rotation representations into one another. The
following summaries group the conversion formulas into one place.

Transforming the Axis-Angle Representation
The rotation axis unit vector n and the rotation angle θ define this
representation, which is discussed in detail in “Axis-Angle Representation” on
page 3-11. This representation defines the quaternion and rotation matrix
representations:

q n n n qx y z= () () () ()⎡⎣ ⎤⎦ = [, , sin sin , sin , cosθ θ θ θ2 2 2 2 qv s]]
= ⋅ = + ⋅ + ⋅ −R Iexp() ()sin () (cos)θ θ θn J n J n J 2 1

3-14

How SimMechanics Represents Body Orientation

n ⋅ =
−

−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

J
0

0
0

n n
n n
n n

z y

z x

y x

Transforming the Quaternion Representation
The quaternion is a vector-scalar pair, q = [qv qs], defined by “Quaternion
Representation” on page 3-12. You can recover the axis-angle representation
from the quaternion components:

θ = ⋅ ()
= −

−2

1

1

2

cos q

q

s

v sn q

You can also construct the equivalent rotation matrix R from q.

R q I q Q

Q

 s s v v
T

v

v ik ijkj v j

= − + + ⊗

() = ()∑
()2 1 2 22 q q

qε

The term q qv
T

v⊗ is the outer product of qv with itself, the 3-by-3 matrix of qv
components multiplied by each other.

Transforming the Rotation Matrix Representation
The rotation matrix R is an orthogonal 3-by-3 matrix: RRT = RTR = I, defined
in “Rotation Matrix Representation” on page 3-12. You can invert the rotation
matrix representation to obtain the equivalent representations for the
quaternion q = [qv qs] and axis-angle (n, θ

q Tr R

Tr R Tr R

Tr R

Tr

s

v

= +

= ∗ +()
= ⋅ +()
=

−

1
2

1 1
2

1

2 1

2 1

()

() ()

cos ()

(

q J

J

θ

n ∗∗ + ⋅ −()R Tr R Tr R) () ()1 3

3-15

3 Representing Motion

The trace Tr of a matrix is the sum of its diagonal elements.

The J matrices constitute a 3-vector of matrices defined by the antisymmetric
permutation symbol, (Jj)ik = εijk. See “The Permutation Symbol ε and the
Vector Cross Product” on page 3-10 for more details.

The RotationMatrix2VR block converts the rotation matrix to the axis-angle
representation.

Transforming the Euler Angle Representation
The Euler angle representation of a rotation, defined by “Euler Angle
Representation” on page 3-13, stands apart from the other three, insofar
as you cannot derive it from the axis-angle representation. It depends on
the choice of rotation axis sequence, which generates multiple definition
conventions. The Euler angle representation, at certain limits, can also be
singular. Use caution with Euler angle expressions.

If you choose a convention and three angles, then compute R, you can convert
R to the other representations by the use of “Transforming the Rotation
Matrix Representation” on page 3-15 above. But given the nine components of
R, you must find the Euler angles by inverting the nine equations that result
from this matrix equation. (Only three equations of the nine are independent.)
In some cases, angles can be read from R by inspection.

For example, choose rotations with respect to a Body coordinate system (CS)
triad, in a commonly used rotation axis sequence Z-X-Z, with , θ, as the
respective angles. The rotation matrix is RWB = R1()*R2(θ)*R3(),

RWB φ θ ψ
φ φ
φ φ θ, ,

cos sin
sin cos cos si () =

−⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−
0
0

0 0 1

1 0 0
0 nn

sin cos

cos sin
sin cosθ

θ θ

ψ ψ
ψ ψ

0

0
0

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 =
− − −cos cos sin cos sin cos sinφ ψ φ θ ψ φ ψ ssin cos cos

sin cos cos cos sin sin sin cos cos cos
φ θ ψ

φ ψ φ θ ψ φ ψ φ θ ψ
0
0+ − +

ssin sin sin cos cosθ ψ θ ψ θ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

In this convention, you can read θ from the R33 component, then find from
the R32 or R31 component. Obtain from one of the other components, using
cos2 + sin2 = 1, or by multiplying from the right by R3

T, then R2θT. The
second method yields a unique solution for the sine and cosine of .

3-16

How SimMechanics Represents Body Orientation

Converting the Angular Velocity
The rotation matrix R is defined in “Body Motion in SimMechanics” on page
3-4 and “Rotation Matrix Representation” on page 3-12.

The angular velocity vector ω is the rate at which a spinning CS rotates. R
and the antisymmetric matrix define ω:

Ω

Ω

Ω

= +() ⋅ = − ⋅ ()
=

= ()
∑
∑

d dt d dt

+

T T

ik ijk jj

j
1
2 ijk ikik

R R R R

ε ω

ω ε

You can also express the angular velocity in terms of Euler angles, by choosing
a particular set of angles to represent R. See “Euler Angle Representation” on
page 3-13 and “Transforming the Euler Angle Representation” on page 3-16.

The quaternion derivative is also related to the angular velocity:

d /dt

d /dt ()

v
1
2 s Body v Body

s
1
2 v Body

q q

q

= () −()
= −() ⋅

q

q

ωω ωω

ωω

x

3-17

3 Representing Motion

Orienting a Body and Its Coordinate Systems
This section shows you a set of examples of orienting a test body and its
attached coordinate systems (CSs). It makes detailed use of the rotation
representations and conversions explained in “How SimMechanics Represents
Body Orientation” on page 3-11, and shows how to use MATLAB workspace
variables in your SimMechanics block dialogs.

• “Setting Up the Test Body” on page 3-18

• “Rotating the Body and Its CG CS Relative to World” on page 3-20

• “Rotating the Body Relative to Its Center of Gravity” on page 3-22

• “Creating and Rotating Body Coordinate Systems” on page 3-23

This sequence of examples assumes you are familiar with the basics of setting
up and visualizing bodies and machines. See the tutorials of Chapter 2,
“Building and Visualizing Simple Machines” and the Body block reference.
Look for complete instructions on modeling and visualizing machines in
Chapter 4, “Modeling Mechanical Systems” and Chapter 6, “Visualizing and
Animating Machines”.

Setting Up the Test Body
The later examples require a configured body to work with. Here you set up
a simple body with one Body coordinate system (CS), located at the center
of gravity (CG).

Initializing the Body
First, create, connect, and visualize the initial body:

1 Open the SimMechanics block library and a new Simulink model window.

2 Drag and drop a Machine Environment, a Ground, and a Body block, as
well as any Joint block you want, into your model window.

3 Open the Body dialog. In the Body coordinate systems area, delete the
Body CS named CS2. Deselect the Show port check box for CS1.

3-18

Orienting a Body and Its Coordinate Systems

Leave the other defaults. The CG CS is located at Origin position vector
[0 0 0]. Select Show port for the CG CS. Click Apply.

4 Open the Ground and select Show Machine Environment port. Click
OK. Connect Ground to Machine Environment at the new Machine
Environment port.

5 Connect the Body block at its CG CS port, through the Joint block, to
Ground at its grounded CS port.

6 From the Simulation menu, open Configuration Parameters to the
SimMechanics node. In the Visualization area, select the Update
machine visualization on update diagram check box. Click OK.

7 From the Edit menu, select Update Diagram. When the window opens,
open the SimMechanics menu, deselect Convex Hulls, and select
Ellipsoids. The window now renders the body as a sphere.

Configuring the Body
Now configure the body’s mass and geometric properties:

1 In the Body dialog’s Mass properties area, enter 11.5 kg for the mass
and [18 0 0; 0 56 0; 0 0 56] kg*m2 for the inertia. Click Apply.

3-19

3 Representing Motion

2 Update your diagram. The body in the window changes to an ellipsoid, with
(x,y,z) axes of length 2.02, 0.885, and 0.885 meters (m), respectively.

Turn off the ellipsoid surface to see the CG CS triad alone. The x-, y-, and
z-axes are red, green, and blue, respectively.

Test Body Ellipsoid: Initial Orientation, with Detail of CG CS Axes

Rotating the Body and Its CG CS Relative to World
In this example, you rotate the body, along with its CG CS axes, with respect
to the World CS. The CG CS axes continue to have the same orientation with
respect to the body shape. The rotation is a positive turn of 75 deg (degrees)
about the axis (1,1,1) in World. In this example, you rotate with a quaternion.

Computing the Rotation as a Quaternion

The unit vector n in the (1,1,1) direction is (1,1,1)/ 3 . The rotation angle
is θ = 75 deg = 1.3090 rad. At the MATLAB command line, define th =
pi*75/180 and compute the quaternion components:

q = [sin(th/2)/sqrt(3) sin(th/2)/sqrt(3) sin(th/2)/sqrt(3) ...
cos(th/2)]

3-20

Orienting a Body and Its Coordinate Systems

q =
0.3515 0.3515 0.3515 0.7934

Rotating the Body and Its CG CS Axes with the Quaternion
To rotate the body and the CG CS coordinate axes together by this rotation,

1 In the Body dialog, click the Orientation tab in the Body coordinate
systems area. Under the Specified using convention pull-down menu,
select Quaternion.

2 Under Orientation vector, enter q. Leave the other defaults. The
Relative to coordinate system field indicates that the rotation
represented by q is oriented with respect to the World axes. Click Apply.

3 Update the diagram. The body and its CG CS rotate together relative to
World:

Test Body Ellipsoid: Body and Its CG CS Axes Rotated Together

4 Finally rotate the body and its CG CS back to the original orientation
by entering [0 0 0 1] under Orientation vector and clicking Apply.
Update your diagram to refresh the visualization.

3-21

3 Representing Motion

Rotating the Body Relative to Its Center of Gravity
You can also rotate the body without rotating its CG CS axes. To accomplish
this requires leaving the Body CSs unchanged while rotating the body’s
inertia tensor relative to the CG CS. Here you use the same rotation as in the
preceding example, but represent it as a rotation matrix.

Computing the Rotation as a Rotation Matrix

The unit vector n in the (1,1,1) direction is (1,1,1)/ 3 . The rotation angle is
θ = 75 deg = 1.3090 rad. Compute the rotation matrix:

nDotJ = [0 -1/sqrt(3) 1/sqrt(3); 1/sqrt(3) 0 -1/sqrt(3); ...
-1/sqrt(3) 1/sqrt(3) 0]
nDotJ =

0 -0.5774 0.5774
0.5774 0 -0.5774

-0.5774 0.5774 0

R = eye(3) + nDotJ*sin(th) + nDotJ^2*(1-cos(th))
R =

0.5059 -0.3106 0.8047
0.8047 0.5059 -0.3106

-0.3106 0.8047 0.5059

Rotating the Body’s Inertia Tensor
The components of the inertia tensor that you enter into the Body dialog are
always defined relative to the CG CS axes. If you hold the CG CS axes fixed
and rotate the body by a rotation matrix R, the inertia tensor transforms
according to Inew = R*Iold*RT. Compute this with MATLAB:

I = [18 0 0; 0 56 0; 0 0 56]
I =

18 0 0
0 56 0
0 0 56

Irot = R*I*R'
Irot =

46.2753 -15.4698 5.9711

3-22

Orienting a Body and Its Coordinate Systems

-15.4698 31.3911 9.4987
5.9711 9.4987 52.3336

Rotating the Body with the Rotation Matrix
Symmetrize Irot by entering Irot = (Irot + Irot')/2. Then rotate the
body alone relative to World and the CG CS.

1 In the Body dialog’s Mass properties area, replace the existing inertia
tensor with Irot. Click Apply.

2 Update the diagram. The body rotates again, as in the preceding example.
But unlike that example, the CG CS axes do not change.

Test Body Ellipsoid: Body Rotated Relative to Its CG CS Axes

3 Finally rotate the body back to the original orientation by entering I in
the Inertia field and clicking Apply. Update the diagram to refresh the
visualization.

Creating and Rotating Body Coordinate Systems
In the preceding examples, you work with only one Body CS, the CG CS. In
this example, you set up additional Body CSs and learn how to rotate them.
It is common in mechanical applications to require extra Body CSs to locate

3-23

3 Representing Motion

sensors and actuators on bodies. Their axis orientations do not, in general,
align with the orientation of the CG CS axes.

You visualize the body here using convex hulls, instead of ellipsoids, to
articulate the Body CSs more clearly. Obtaining a full convex hull, with a
surface enclosing a volume, requires at least three non-coplanar Body CSs, in
addition to the CG CS.

This example also shows you how to obtain Euler angles and rotate with them.

Creating and Viewing the New Body CSs
To change the visualization rendering to convex hulls,

1 Open the special SimMechanics menu in the visualization window. Select
the Machine Display submenu.

2 Deselect Ellipsoids and select Convex Hulls.

To create and visualize the new Body CSs,

1 Go to the Body dialog’s Body coordinate systems area. Add three new
coordinate systems to the CS list. Name them CS1, CS2, and CS3.

2 For these three CSs, change the Origin position vector fields to [1 0 0],
[0 1 0], and [0 0 1], respectively. Click Apply.

3 Update the diagram. The SimMechanics window now renders the body as a
tetrahedron composed of four adjoining triangular surfaces.

4 Make the new Body CSs easier to see by turning off the convex hull body
surfaces and the axes grid. This step leaves only the Body CS triads and

3-24

Orienting a Body and Its Coordinate Systems

the wire frame outline of the convex hull. All the Body CS triads are
oriented the same way, parallel to the CG CS axes and the World axes.

Test Body Convex Hull with CG CS and Three Body Coordinate Systems

Computing the Rotation as a Set of Euler Angles
The preceding examples used two rotation representations, the quaternion
and the rotation matrix, based on the axis-angle representation. In this
example, you use the same rotation as before, but represented as a set of
Euler angles.

The rotation axis sequence convention is Z-X-Z, with , θ, as the first,
second, and third angles, respectively, the same as presented in “Converting
Rotation Representations” on page 3-14. To obtain the angles, you equate the
rotation matrix form for that convention:

RZ φ
φ φ
φ φ() =

−⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cos sin
sin cos

0
0

0 0 1

to the numerical form of R you computed in “Rotating the Body Relative to
Its Center of Gravity” on page 3-22:

3-25

3 Representing Motion

R =
0.5059 -0.3106 0.8047
0.8047 0.5059 -0.3106

-0.3106 0.8047 0.5059

and invert the resulting equations. The solution for and Ψ is

theta = acos(R(3,3))
theta =

1.0404

psi = asin(R(3,1)/sin(theta))
psi =

-0.3684

or about 60 and -21 deg, respectively.

Here is a method that yields a unique solution by using the structure of
the Euler convention, R = R1()*R2(θ)*R3(). Multiply R on the right by
R3()T*R2(θ)T, isolating R1():

R3 = [cos(psi) -sin(psi) 0; sin(psi) cos(psi) 0; 0 0 1]
R3 =

0.9329 0.3601 0
-0.3601 0.9329 0

0 0 1.0000

R2 = [1 0 0; 0 cos(theta) -sin(theta); 0 sin(theta) cos(theta)]
R2 =

1.0000 0 0
0 0.5059 -0.8626
0 0.8626 0.5059

R1 = R*R3'*R2'
R1 =

0.3601 -0.9329 -0.0000
0.9329 0.3601 -0.0000
0.0000 0.0000 1.0000

phi = acos(R1(1,1))
phi =

3-26

Orienting a Body and Its Coordinate Systems

1.2024

or about 69 deg.

Rotating a Body CS Axis Triad
Here you rotate one of the Body CS axis triads, using the Z-X-Z rotation axis
sequence convention and, for Euler angles, the , θ, and you just found.

1 In the Body dialog’s Orientation pane, locate the CS2 entry.

Under Orientation vector, enter [phi theta psi]. In the Units
pull-down menu, select rad. In the Specified using convention
pull-down menu, select Euler Z-X-Z. Click Apply.

2 Update your diagram. The CS2 axis triad, whose origin continues to be
located at (0,1,0), now looks like this:

This rotated orientation of the CS2 axis triad is the same as that of the
rotated CG CS in “Rotating the Body and Its CG CS Relative to World” on
page 3-20. The two rotations are the same and produce the same result.

3-27

3 Representing Motion

3-28

4

Modeling Mechanical
Systems

SimMechanics gives you a complete set of block libraries for modeling machine
parts and connecting them into a Simulink block diagram.

Modeling Machines (p. 4-3) How to create a mechanical model
with SimMechanics and Simulink

Modeling Bodies and Grounds
(p. 4-10)

How to represent a machine’s
mechanical environment and the
mass and geometric properties of
bodies

Modeling Joints (p. 4-20) How to represent degrees of freedom
as joints

Modeling Constraints and Drivers
(p. 4-38)

How to represent time-independent
and time-dependent constraints on
relative body motions

Modeling Actuators (p. 4-45) How to apply forces, motions, and
initial conditions to machines

Modeling Sensors (p. 4-63) How to measure motions and forces
in machines

Modeling Force Elements (p. 4-69) How to represent internal forces
within machines

Checking Model Validity (p. 4-74) Special restrictions and
requirements for block diagram
models with SimMechanics blocks

4 Modeling Mechanical Systems

Refer to Chapter 3, “Representing Motion” to review body kinematics. If
you need more information on rigid body mechanics, consult the physics
and engineering literature, beginning with the Appendix B, “Bibliography”.
Classic engineering mechanics texts include Goodman and Warner [3], [4] and
Meriam [10]. The books of Goldstein [2] and José and Saletan [6] are more
theoretically oriented.

4-2

Modeling Machines

Modeling Machines
In SimMechanics the term machine has two meanings.

It refers to a physical system that includes at least one rigid body.
SimMechanics provides a library of Simulink blocks that allow you to create
Simulink models of machines.

It also refers to a topologically distinct and separate block diagram
representing one physical machine. A model can have one or more machines.

About SimMechanics Models
A SimMechanics model consists of a block diagram composed of one or more
machines, each of which is a set of connected blocks representing a single
physical machine. For example, the following model contains two machines.

4-3

4 Modeling Mechanical Systems

Comparison to Other Simulink Models
A SimMechanics model differs significantly from other Simulink models
in how it represents a machine. An ordinary Simulink model represents
the mathematics of a machine’s motion, i.e., the algebraic and differential
equations that predict the machine’s future state from its present state.
The mathematical model enables Simulink to simulate the machine. By
contrast, a SimMechanics model represents the physical structure of a
machine, the geometric and kinematic relationships of its component bodies.
SimMechanics converts this structural representation to an internal,
equivalent mathematical model. This saves you the time and effort of
developing the mathematical model yourself.

Creating a SimMechanics Model
You create a SimMechanics model in much the same way you create any other
Simulink model. First, you open a Simulink model window. Then you drag
instances of SimMechanics and other Simulink blocks from the Simulink
block libraries into the window and draw lines to interconnect the blocks (see
“Connecting SimMechanics Blocks” on page 4-5).

The SimMechanics block library provides the following blocks specifically
for modeling machines:

• Machine Environment blocks set the mechanical environment for a
machine. Exactly one Ground block in each machine must be connected to a
Machine Environment block. See Chapter 5, “Running Mechanical Models”.

• Body blocks represent a machine’s components and the machine’s immobile
surroundings (ground). See “Modeling Bodies and Grounds” on page 4-10.

• Joint blocks represent the degrees of freedom of one body relative to
another body or to a point on ground. See “Modeling Joints” on page 4-20.

• Constraint and Driver blocks restrict motions of or impose motions on
bodies relative to one another. See “Modeling Constraints and Drivers”
on page 4-38.

• Actuator blocks specify forces, motions, variable masses and inertias, or
initial conditions applied to bodies, joints, and drivers. See “Modeling
Actuators” on page 4-45.

4-4

Modeling Machines

• Sensor blocks measure the forces on and motions of bodies, joints, and
drivers. See “Modeling Sensors” on page 4-63.

• Force element blocks model interbody forces. See “Modeling Sensors” on
page 4-63.

You can use blocks from other Simulink libraries in SimMechanics models.
For example, you can connect the output of SimMechanics Sensor blocks
to Scope blocks from the Simulink Sinks library to display the forces and
motions of your model’s bodies and joints. Similarly, you can connect blocks
from the Simulink Sources library to SimMechanics Driver blocks to specify
relative motions of your machine’s bodies.

Connecting SimMechanics Blocks
In general, you connect SimMechanics blocks in the same way you connect
other Simulink blocks: by drawing lines between them. Significant differences
exist, however, between connecting standard Simulink blocks and connecting
SimMechanics blocks. The following sections discuss these differences.

Connection Lines
The lines that you draw between standard Simulink blocks, called signal lines,
represent inputs to and outputs from the mathematical functions represented
by the blocks. By contrast, the lines that you draw between SimMechanics
blocks, called connection lines, represent physical connections and spatial
relationships among the bodies represented by the blocks.

You can draw connection lines only between specialized connector ports
available only on SimMechanics blocks (see next section) and you cannot
branch existing connection lines. Connection lines appear as solid black when
connected and as dashed red lines when either end is unconnected.

Connector Ports
Standard Simulink blocks have input and output ports. By contrast, most
SimMechanics blocks contain only specialized connector ports that permit
you to draw connection lines among SimMechanics blocks. SimMechanics
connector ports are of two types: Body CS ports and general-purpose ports.

4-5

4 Modeling Mechanical Systems

Body CS ports appear on Body and Ground blocks and define connection points
on a body or ground. Each is associated with a local coordinate system whose
origin specifies the location of the associated connection point on the body.

General-purpose connector ports appear on Joint, Constraint, Driver, Sensor,
and Actuator blocks. They permit you to connect Joints to Bodies and connect
Sensors and Actuators to Joints, Constraints, and Drivers. General-purpose
connector ports appear as circles on the block icon. The circle is unfilled if the
port is unconnected and filled if the port is connected.

Interfacing SimMechanics Blocks to Simulink Blocks
SimMechanics Actuator blocks (see “Modeling Actuators” on page 4-45)
contain standard Simulink input ports. Thus, you can connect standard
Simulink blocks to a SimMechanics model via Actuator blocks. Similarly,
SimMechanics Sensor blocks contain output ports (see “Modeling Sensors”
on page 4-63). Thus, you can connect a SimMechanics model to Simulink
blocks via Sensor blocks.

4-6

Modeling Machines

Setting SimMechanics Block Properties at the
Command Line
You cannot use the Simulink set_param and get_param commands to set or
get SimMechanics block parameters. Instead, you must set block parameters
via the block dialog boxes. You can open the dialogs by double-clicking the
block, or by right-clicking the block and selecting Open block.

Creating SimMechanics Subsystems
Large, complex block diagram models are often hard to analyze. Enclosing
functionally related groups of blocks in subsystems alleviates this difficulty
and facilitates reuse of block groups in different models.

You can create subsystems containing SimMechanics blocks that you can
connect to other SimMechanics blocks. You do this in two ways:

• Automatically

• Manually

The Simulink documentation explains more about creating subsystems.

Creating a Subsystem Automatically
To create a SimMechanics subsystem automatically,

4-7

4 Modeling Mechanical Systems

1 Create the subsystem block diagram in your model window, leaving
unconnected ports for external connections.

2 Group-select the subsystem block diagram.

3 Select the Create subsystem command from the Edit menu of the
Simulink model window.

The command replaces the block diagram with a Subsystem block containing
the selected block diagram. The command also creates and connects
SimMechanics Connection Port blocks for the ports that you left unconnected
in the block diagram. The Connection Port blocks in turn create connector port
icons on the subsystem icon, enabling you to connect external SimMechanics
blocks to the new subsystem.

Creating a Subsystem Manually
Sometimes you need to make a subsystem configured differently from an
automatically created one. To create a SimMechanics subsystem manually,

4-8

Modeling Machines

1 Drag a Subsystem block into your model window.

2 Open the Subsystem block.

3 Create the subsystem block diagram in the subsystem window.

4 Drag a Connection Port block from the SimMechanics Utilities library
into the subsystem window for each port that you want to be available
externally.

5 Connect the external connector ports to the Connection Port blocks.

Creating Custom SimMechanics Blocks with Masks
You can create your own SimMechanics blocks from subsystems, for example,
a spring-loaded Joint block or a sphere Body block. To do this, create a block
diagram that implements the functionality of your custom block, enclose
the diagram as a subsystem, and add a mask (i.e., user interface) to the
subsystem. To facilitate sharing your custom blocks across models or with
other users, create a Simulink block library and add these masked subsystem
blocks to the library. The Simulink documentation explains how to create
custom blocks with masks.

4-9

4 Modeling Mechanical Systems

Modeling Bodies and Grounds
The basic components of any mechanism are its constituent rigid bodies. In
SimMechanics, the term body refers to any point or spatially extended object
that has mass. SimMechanics bodies, unlike physical bodies, do not have
degrees of freedom. The SimMechanics Bodies library contains two blocks for
representing bodies in a Simulink model:

• Ground

Models a point on an ideal body of infinite mass and extent that serves as a
fixed reference point for machines (see “Modeling Grounds” on page 4-10).

• Body

Models rigid bodies of finite mass and extent, including their attached
body coordinate systems (see “Modeling Rigid Bodies” on page 4-12 and
“Working with Body Coordinate Systems” on page 4-15).

Chapter 3, “Representing Motion” explains, with detailed examples, more
about configuring bodies and their coordinate systems in space.

Machine Environment Required for Each Machine
One Ground block in each machine of your model plays a second role,
connection to that machine’s Machine Environment block, which sets its
mechanical environment. See Chapter 5, “Running Mechanical Models”.

Modeling Grounds
In SimMechanics, ground refers to a body of infinite mass and size that acts
both as a reference frame at rest for a machine as a whole and as a fixed
base for attaching machine components, e.g., the factory floor on which a
robot stands. SimMechanics Ground blocks enable you to represent points
on ground in your machine. This in turn enables you to specify the degrees
of freedom that your system has relative to its surroundings. You do this
by connecting Joint blocks representing the degrees of freedom between
the Body blocks representing parts of your machine and the Ground blocks
representing ground points.

4-10

Modeling Bodies and Grounds

Each Ground block has a single connector port to which you can connect a
Joint block that can in turn be connected to a single Body block. Each Ground
block therefore allows you to represent the degrees of freedom between a
single part of your machine and its surroundings. If you want to specify the
motion of other parts of your machine relative to the surroundings, you must
create additional Ground blocks.

Note Each machine in a SimMechanics model must contain at least one
Ground block connected to a Body block via a Joint block. Each submachine
connected by a Shared Environment block must have at least one Ground.

Exactly one Ground block in each machine in your model must be connected
to a Machine Environment block.

The World Coordinate System
SimMechanics uses an internal master coordinate system and reference
frame called World. All grounds are at rest in World. The connector port of
each Ground block defines a grounded coordinate system called GND. The
GND coordinate system’s axes are parallel to World. By default the origin
of the grounded coordinate system coincides with the origin of the World
coordinate system.

4-11

4 Modeling Mechanical Systems

The Location field of a Ground block’s dialog box allows you to move the
origin of GND to some other point in the World coordinate system, as in the
example “Building a Simple Pendulum” on page 2-11.

The GND coordinate system allows you to specify the positions and motions of
parts of your machine relative to fixed points in the machine’s surroundings.

Modeling Rigid Bodies
The SimMechanics Body block enables you to model rigid bodies of finite
mass and extent. A body is rigid if its internal parts cannot move relative to
one another.

About Body Blocks
A Body block allows you to specify the following attributes of a rigid body.

Mass Properties. These include the body’s mass, which determines its
response to translational forces, and its inertia tensor, which determines its
response to rotational torques.

4-12

Modeling Bodies and Grounds

Body Coordinate Systems. By default a Body block defines three local
coordinate systems, one associated with a body’s center of gravity, labeled
CG, and two others, labeled CS1 and CS2, respectively, associated with two
other points on the body that you can specify. You can create additional body
coordinate systems or delete them as necessary.

A Body block’s dialog box allows you to specify a Body CS’s origin (see “Setting
a Body CS’s Position” on page 4-15) and orientation (see “Setting a Body
CS’s Orientation” on page 4-17). The origin and orientation of a body’s CG
CS specify the body’s starting location and orientation. The origins of the
other body coordinate systems specify the initial locations of other points
on the body.

SimMechanics allows flexibility in specifying the origins and orientations of
a body’s coordinate systems. You can specify the origin and orientation of
a body CS relative to

• The World CS

• Any other CS on the same body

• The Adjoining CS, the CS on the neighboring body or ground directly
connected by a Joint, Constraint, or Driver to the selected Body CS you
are configuring

This simplifies creation and maintenance of models. The only limitation is
that you must specify the origin and location of at least one of a machine’s
body coordinate systems relative to the World CS.

Home Configuration. Once you enter all the needed positions and
orientations into the Bodies of your model, your machine is in its home
configuration. The body velocities are zero, and any disassembled joints
remain disassembled.

Connector Ports. Any Body CS can display a Body CS Port. A Body CS Port
allows you to attach Joints, Actuators, and Sensors to a Body. By default, a
Body’s CS1 and CS2 coordinate systems each display a Body CS port. You
can display a port for any other Body coordinate system as well, including
a Body’s CG CS.

4-13

4 Modeling Mechanical Systems

Creating a Body Block
To create a Body block,

1 Drag a Body block icon from the SimMechanics Bodies Library and drop
it into your model window.

2 Open the Body block’s dialog box.

3 Enter the mass of the body you are modeling in the Mass field.

4 Select the units of mass from the adjacent units list.

5 Enter a 3-by-3 matrix representing the body’s inertia tensor relative to its
center of gravity coordinate system (CG CS) origin and axes in the Inertia
field (see “Determining Inertia Tensors for Common Shapes” on page 4-14).

6 Enter the initial positions of the body’s CG and coordinate systems in the
Position pane.

7 Enter the initial orientation of the body’s CG and coordinate systems in
the Orientation pane.

8 Click OK or Apply.

Determining Inertia Tensors for Common Shapes
The following table enables you to determine the inertia tensors for some
common shapes. For each shape of mass m, the table lists the shape’s principal
moments of inertia, I1, I2, and I3, along the x-, y-, and z-axes of the shape’s
CG coordinate system.

Shape I1 I2 I3
Thin rod of length L aligned
along z

mL2/12 mL2/12 0

Sphere of radius R 2mR2/5 2mR2/5 2mR2/5

Cylinder of radius R and
height h aligned along z

(m/4)(R2 +
h2/3)

(m/4)(R2 +
h2/3)

mR2/2

4-14

Modeling Bodies and Grounds

Shape I1 I2 I3
Rectangular parallelopiped
of sides a, b, and c aligned
along x, y, z, respectively

(m/12)(b2 +
c2)

(m/12)(a2 +
c2)

(m/12)(a2 +
b2)

Cone of base radius R and
height h along z

(m/4)(3R2/5
+ h2)

(m/4)(3R2/5
+ h2)

3mR2/10

Ellipsoid of semiaxes a, b,
and c aligned along x, y, z,
respectively

(m/5)(b2 + c2) (m/5)(a2 + c2) (m/5)(a2 + b2)

The corresponding inertia tensor for the shape is the following 3-by-3 matrix:

I
I

I

1

2

3

0 0
0 0
0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Working with Body Coordinate Systems
Every body in SimMechanics has body coordinate systems (CSs) attached to
it. The location of a body CS is the origin of that CS. The CS’s rectangular
x-y-z coordinate axes are rotated at some orientation. You set up body CS
origins and orientations before running your model. But once the bodies start
to move, the origins and orientations of a body’s CSs remain fixed in the
body. The elements of a body’s inertia tensor also remain fixed in the body.
Consult Chapter 3, “Representing Motion” for more about orienting bodies
and body CSs.

The sections “Managing Body Coordinate Systems” on page 4-18 and
“Creating Body CS Ports” on page 4-19 explain how to create custom body
coordinate systems and Body CS ports or delete existing ports.

Setting a Body CS’s Position
The Position pane of a Body block’s dialog box allows you to specify the
position of any of a body’s local coordinate systems.

4-15

4 Modeling Mechanical Systems

The Translated from Origin of and Components in Axes of lists in the
pane together specify which other of your machine’s coordinate systems you
use as reference points and orientations to set up the coordinate systems of
the body you are configuring.

To specify the position of a Body CS,

1 Open the Body block’s dialog box.

The dialog box’s Position pane lists the body’s local coordinate systems in
a table.

Each row specifies the position of the coordinate system specified in the
Name column.

2 Select the units in which you want to specify the origin of the Body CS from
the CS’s Units list.

3 Specify the reference coordinate systems for the Body CS, i.e., the
coordinate systems relative to which you want to measure the Body CS
origin and the orientation of the Body CS’s coordinate axes. The choices are
World, the adjoining CS, and other Body CSs on the same Body.

You must directly or indirectly define all Body CSs by reference to a Ground
or to World. Indirect reference means that you specify a Body CS relative
to another CS and so on, in a chain of references that ultimately ends in
a Ground or World.

4-16

Modeling Bodies and Grounds

You do this by selecting the origin and orientation of the specification CS
from the Body CS’s Translated from Origin of and Components in
Axes of lists, respectively. For example, suppose that you want to specify
the position of CS2 relative to another coordinate system, whose origin is at
the origin of CS1 but whose axes run parallel to those of the CG CS. Then
you would select CS1 from the Translated from Origin of list of CS2 and
CG from the Components in Axes of list of CS2.

4 Enter a vector specifying the location of the Body CS in the Origin
Position Vector [x y z] field of the CS.

The components of the vector must be in the units that you selected and
relative to the coordinate system that you selected. For example, suppose
that you had selected m as the unit for specifying CS2’s origin and CS1 and
WORLD as the CSs specifying the origin and orientation for CS2. Now
suppose that you want to specify the location of CS2 as one meter to the
right of CS1 along the World x-axis. Then you would enter [1 0 0] as
CS2’s position vector.

5 Click Apply to accept the position setting or OK to accept the setting and
dismiss the dialog box.

Setting a Body CS’s Orientation
The Orientation pane of a Body block’s dialog box allows you to specify the
orientation of any of a body’s local coordinate systems.

To specify the orientation of a Body CS,

1 Open the Body block’s dialog box.

2 Select the dialog box’s Orientation pane.

4-17

4 Modeling Mechanical Systems

3 Select the units (degrees or radians) in which you want to specify the
orientation of the CS from the CS’s Units list.

4 Select the coordinate system relative to which you want to specify the
orientation of the Body CS from the Body CS’s Relative CS list. The
choices are World, the adjoining CS, and other Body CSs on the same Body.

5 Select the convention you want to use to specify the orientation of the Body
CS from the CS’s Specified Using Convention list.

6 Enter a vector that specifies the orientation of the Body CS relative to
the CS you choose for that purpose, according to the selected specification
convention.

7 Click Apply to accept the orientation setting or OK to accept the setting
and dismiss the dialog box.

Managing Body Coordinate Systems
You will often need to modify the default body coordinate systems of a Body
block. You might want to connect a Body to more than two Joints, in which
case you need not only more Body CSs, but their Body CS ports as well.
Connecting Actuators and Sensors to Bodies requires a Body CS and Body
CS port for each connection.

The Body coordinate systems panel of a Body block’s dialog box contains a row
of buttons that allow you to add, delete, and reorder a Body’s local coordinate
systems.

4-18

Modeling Bodies and Grounds

To use these buttons, select a Body CS in the CS table and select

• Delete to remove the selected CS from the table

• Up to move the CS’s entry one row up in the CS table

• Down to move the CS’s entry one row down in the CS table

Select Add to add a new CS.

Creating Body CS Ports
To add or delete a port from a Body block’s icon, open the block’s dialog box
and select or clear the CS’s Show Port check box in the dialog box’s Body CS
table. Click OK or Apply to confirm the change.

4-19

4 Modeling Mechanical Systems

Modeling Joints
In SimMechanics, a joint represents the degrees of freedom (DoF) that one
body (the follower) has relative to another body (the base). The base body can
be a finite rigid body or a ground. Unlike a physical joint, a SimMechanics
joint has no mass, although some joints have spatial extension (see “Modeling
with Massless Connectors” on page 4-29).

A SimMechanics joint does not necessarily imply a physical connection
between two bodies. For example, a SimMechanics Six-DoF joint allows the
follower, e.g., an airplane, unconstrained movement relative to the base, e.g.,
ground, and does not require that the follower ever come into contact with
the base.

SimMechanics joints only add degrees of freedom to a machine, because the
Body blocks carry no degrees of freedom. Contrast this with physical joints,
which both add DoFs (with axes of motion) and remove DoFs (by connecting
bodies). See “Counting Degrees of Freedom” on page 4-77.

SimMechanics provides an extensive Joints Library with blocks for modeling
various types of joints. This section explains how to use these blocks:

• “About Joints” on page 4-20

• “Creating a Joint” on page 4-27

• “Modeling with Massless Connectors” on page 4-29

• “Modeling with Disassembled Joints” on page 4-33

• “Cutting Closed Loops” on page 4-36

About Joints
Modeling with Joint blocks requires an understanding of the following key
concepts:

• Joint primitives

• Joint types

• Joint axes

• Joint directionality

4-20

Modeling Joints

• Assembly restrictions

Joint Primitives
Each Joint block conceptually represents one or more joint primitives that
together specify the degrees of freedom that a follower body has relative to the
base body. The following table summarizes the joint primitives found singly
or multiply in Joint blocks.

Primitive
Type Symbol Degrees of Freedom

Prismatic P One degree of translational freedom along a
prismatic axis

Revolute R One degree of rotational freedom about a revolute
axis

Spherical S Three degrees of rotational freedom about a pivot
point

Weld W Zero degrees of freedom

Joint Types
The blocks in the SimMechanics Joint Library fall into the following
categories:

4-21

4 Modeling Mechanical Systems

• Primitive joints

Each of these blocks contains a single joint primitive. For example, the
Revolute block contains a revolute joint primitive.

• Composite joints

These blocks contain combinations of joint primitives, enabling you to
specify multiple rotational and translational degrees of freedom of one
body relative to another. Some model idealized real joints, for example, the
Gimbal and Bearing joints.

Others specify abstract combinations of degrees of freedom. For example,
the Six-DoF block specifies unlimited motion of the follower relative to
the base.

4-22

Modeling Joints

The Custom Joint allows you to create joints with any desired combination
of rotational and translational degrees of freedom, in any order. The
prefabricated composite Joints of the Joints library have the type and
order of their primitives fixed. See “Axis Order” on page 4-24 under “Joint
Axes” on page 4-24.

• Massless connectors

These blocks represent extended joints with spatially separated joint
primitive axes, for example, a Revolute-Revolute Massless Connector.

• Disassembled joints

These blocks represent joints that SimMechanics assembles at simulation
time, for example, a Disassembled Prismatic.

See “Assembly Restrictions” on page 4-26 and “Modeling with Disassembled
Joints” on page 4-33.

4-23

4 Modeling Mechanical Systems

Joint Axes
Joint blocks define one or more axes of translation or rotation along which
or around which a follower block can move in relation to the base block. The
axes of a Joint block are the axes defined by its component primitives:

• A prismatic primitive defines an axis of translation.

• A revolute primitive defines an axis of revolution.

• A spherical primitive defines a pivot point for axis-angle rotation.

For example, a Planar Joint block combines two prismatic axes and hence
defines two axes of translation.

Axis Direction. By default the axes of prismatic and revolute primitives
point in the same direction as the z-axis of the World coordinate system. A
Joint block’s dialog box allows you to point its prismatic and revolute axes in
any other direction (see “Directing Joint Axes” on page 4-28).

Axis Order. SimMechanics executes the motion of composite joints one joint
primitive at a time. A joint that defines more than one axis of motion also
defines the order in which the follower body moves along each axis or about
a pivot. The order in which the axes and/or pivot appear in the Joint block’s
dialog box is the order in which the follower body moves.

Different primitive execution orders are physically equivalent, unless the
joint includes one spherical or three revolute primitives. Pure translations
and pure two-dimensional rotations are independent of primitive ordering.

Joint Directionality
Directionality is a property of a joint that determines the dependence of the
joint on the sign of forces or torques applied to it. A joint’s directionality
also determines the sign of signals output by sensors attached to the joint.
SimMechanics assigns a directionality to every joint in your model. You must
be able to determine the directionality of a joint in order to actuate it correctly
and to interpret the output of sensors attached to it.

When assigning directionality to a joint, SimMechanics regards the joint’s
follower as moving relative to the joint’s base. SimMechanics then assigns

4-24

Modeling Joints

a directionality to the joint, taking into account the type of joint and the
direction of the joint’s axis, as follows.

Directionality of a Prismatic Joint. If the joint is prismatic, a positive force
applied to the joint moves the follower in the positive direction along the axis
of translation. A sensor attached to the joint outputs a positive signal if the
follower moves in a positive direction along the joint’s axis of translation
relative to the base.

Directionality of a Revolute Joint. If the joint is revolute, a positive torque
applied to the joint rotates the follower by a positive angle around the joint’s
axis of rotation, as determined by the right-hand rule. A sensor attached to
the revolute joint outputs a positive signal if the follower rotates by a positive
angle around the joint’s axis of revolution, as determined by the right-hand
rule.

4-25

4 Modeling Mechanical Systems

Directionality of a Spherical Joint. Spherical joint directionality means
the positive sense of rotation of the three rotational DoFs. Pick a rotation
axis, rotating using the right-hand rule from the base Body CS axes. Then
rotate the follower Body about that axis in the right-handed sense.

Directionality of Composite Joints. SimMechanics assigns a directionality
separately to each joint primitive, based on the primitive’s type and the
direction of its axis of translation or rotation. In each case, SimMechanics
regards the follower body of the composite joint as moving relative to the base
body along or around the joint primitive’s axis.

The order of primitives in the composite Joint’s dialog determines the spatial
construction of the joint. The first listed primitive is attached to the base,
the second to the first, and so on, down to the follower, which is attached to
the last primitive. Moving the first listed primitive moves the subsequent
primitives in the list, as well as the follower, relative to the base. Moving any
primitive moves the primitives below it in the list (but not those above it), as
well as the follower. Moving the last listed primitive moves only the follower.

Changing the Directionality of a Joint. You can change the directionality
of a joint by rewiring the Joint block to reverse the roles of the base and
follower bodies or by reversing the sign (direction) of the joint axis.

Assembly Restrictions
Many joints impose one or more restrictions, called assembly restrictions,
on the positions of the bodies that they join. The conjoined bodies must
satisfy these restrictions at the beginning of simulation and thereafter within
assembly tolerances that you can specify (see “Setting Assembly Tolerances”
on page 5-5). For example, the attachment points of revolute and spherical
joints must coincide within assembly tolerances; the attachment points of a
Prismatic joint must be collinear with the prismatic axis within assembly
tolerances; the attachment points of a Planar joint must be coplanar, etc.
Composite joints, e.g., the Six-DoF joint, impose assembly restrictions equal
to the most restrictive of its joint primitives. See the block reference for each
Joint for information on the assembly restrictions, if any, that it imposes.
Positioning bodies so that they satisfy a joint’s assembly restrictions is called
assembling the joint.

4-26

Modeling Joints

All joints except joints in the SimMechanics Disassembled Joints sublibrary
require manual assembly. Manual assembly entails your setting the initial
positions of conjoined bodies to valid locations (see “Assembling Joints”
on page 4-29). SimMechanics assembles disassembled joints during the
model initialization phase of simulation. It assumes that you have already
assembled all other joints before the start of simulation. Hence joints
that require manual assembly are called assembled joints. During model
initialization and at each time step, SimMechanics also checks to ensure that
your model’s bodies satisfy all assembly restrictions. If any of your model
bodies fails to satisfy assembly restrictions, Simulink halts the simulation
and displays an error message.

Creating a Joint
A joint must connect exactly two bodies. To create a joint between two bodies:

1 Select the Joint from the SimMechanics Joints library that best represents
the degrees of freedom of the follower body relative to the base body.

2 Connect the base connector port of the Joint block (labeled B) to the point
on the base block that serves as the point of reference for specifying the
degrees of freedom of the follower block.

3 Connect the follower connector port of the Joint block (labeled F) to
the point on the follower block that serves as the point of reference for
specifying the degrees of freedom of the base block.

4 Specify the directions of the joint’s axes (see “Directing Joint Axes” on
page 4-28).

5 If you plan to attach Sensors or Actuators to the Joint, create an additional
port for each Sensor and Actuator (see “Creating Actuator and Sensor Ports
on a Joint” on page 4-28).

6 If the joint is an assembled joint, assemble the bodies joined by the joint
(see “Assembling Joints” on page 4-29).

4-27

4 Modeling Mechanical Systems

Directing Joint Axes
By default the prismatic and revolute axes of a joint point in the same
direction as the z-axis of the World coordinate system. To change the direction
of the axis of a joint primitive:

1 Open the joint’s dialog box and select a reference coordinate system for
specifying the axis direction from the coordinate system list associated
with the axis primitive.

The options are the World coordinate system or the local coordinate systems
of the base or follower attachment point. Choose the coordinate system
that is most convenient.

2 Enter in the primitive’s axis direction field a vector that points in the
desired direction of the axis in the selected coordinate system.

Creating Actuator and Sensor Ports on a Joint
To create additional connector ports on a Joint for Actuators and Sensors,
open the Joint’s dialog box and set the Number of sensor/actuator ports to
the number of Actuators and Sensors you plan to attach to the Joint.

4-28

Modeling Joints

Apply the setting by clicking OK or Apply.

Assembling Joints
You must manually assemble all assembled joints in your model. Assembling
a joint requires setting the initial positions of its base and follower attachment
points such that they satisfy the assembly restrictions imposed by the joint
(see “Assembly Restrictions” on page 4-26). Consider, for example, the model
discussed in “Four Bar Mechanism” on page 2-36.

This model comprises three bars connected by revolute joints to each other
and to two ground points. The model collocates the CS origins of the Body CS
ports connected to each Joint, thereby satisfying the assembly restrictions
imposed by the revolute joints.

Assembled Revolute Joint in the Four Bar Mechanism

Modeling with Massless Connectors
Massless connectors simplify the modeling of machines that use a relatively
light body to connect two relatively massive bodies. For example, you could
use a Body block to model such a connector. But the resulting equations of
motion might be ill-conditioned, because that connecting body’s mass is small,
and the simulation can be slow or error prone. A massless connector also

4-29

4 Modeling Mechanical Systems

avoids global inconsistencies that can arise if you use a Constraint block to
model the connector.

A massless connector consists of a pair of joints located a fixed distance apart.
Think of a massless connector as a massless rod with a joint primitive affixed
at each end.

The initial orientation and length of the massless connector are defined by
a vector drawn from the base attachment point to the follower attachment
point. During simulation, the orientation of the massless connector can
change but not its length. In other words, the massless connector preserves
the initial separation of the base and follower bodies during machine motion.

Note You cannot actuate or sense a massless connector.

The SimMechanics Joints/Massless Connectors sublibrary contains three
Massless Connectors:

• One with two revolute primitives (Revolute-Revolute)

4-30

Modeling Joints

• One with a revolute primitive and a spherical primitive (Revolute-Spherical)

• One with two spherical primitives (Spherical-Spherical)

You can set the direction of the axes of the revolute primitives.

Creating a Massless Connector
To create a massless connector between two bodies:

1 Drag an instance of a Massless Connector block from the Massless
Connectors sublibrary into your model and connect it to the base and
follower blocks.

If necessary, point the axes of the connector’s revolute joints in the direction
required by the dynamics of the machine you are modeling.

2 Assemble the connector by setting the initial positions of the base and
follower body attachment points to the initial positions required by your
machine’s structure.

During simulation, the massless connector maintains the initial separation
between the bodies though not necessarily the initial relative orientation.

Massless Connector Example: Triple Pendulum
Consider a triple pendulum comprising massive upper and lower bodies and a
middle body of negligible mass. The following model uses a Revolute-Revolute
massless connector to model such a pendulum.

In this model, the joint axes of the Revolute-Revolute connector have their
default orientation along the World z-axis. As a result, the lower arm (Body1)
rotates parallel to the World’s x-y plane.

4-31

4 Modeling Mechanical Systems

Massless Connector Example: Four Bar Mechanism
The following model replaces one of the bars (Bar2) in the mech_four_bar
model from the Demos library with a Revolute-Revolute massless connector.

This model changes the Body CS origins of Bar3 to the following values.

Name Origin position vector Translated from origin of

CG [-0.027 0.048 0] CS1

CS1 [0.054 0.096 0] CS2

CS2 [0 0 0] ADJOINING (Ground_2)

This creates a separation between Bar3 and Bar1 equal to the length of Bar2
in the original model.

4-32

Modeling Joints

Try simulating both the original and the modified model. Notice that the
massless connector version moves differently, because you eliminated the
mass of Bar2 from the model. Notice also that the massless bar does not
appear in the animation of the massless connector version of the model.

Modeling with Disassembled Joints
The SimMechanics Joints/Disassembled Joints sublibrary contains a set of
joints that SimMechanics automatically assembles at the start of simulation;
that is, SimMechanics positions the joints such that they satisfy the assembly
restrictions imposed by the type of joint, e.g., prismatic or revolute. Using
these joints eliminates the need for you to assemble the joints yourself.

Disassembled joints differ from assembled joints in significant ways. An
assembled joint primitive has only one axis of translation or revolution or one
spherical pivot point. A disassembled prismatic or revolute primitive has two
axes of translation or rotation, one for the base and one for the follower body.
A disassembled spherical primitive similarly has two pivot points.

Note Disassembled joints can appear only in closed loops. Each closed loop
can contain only one disassembled joint.

4-33

4 Modeling Mechanical Systems

The dialog box for a disassembled joint allows you to specify the direction
of each axis.

During model assembly, SimMechanics determines a common axis of
revolution or translation that satisfies model assembly restrictions, and aligns
the base and follower axes along the common axis.

Controlling Automatic Assembly and the Assembled
Configuration
If your machine contains Joint Initial Condition Actuator (JICA) blocks,
the machine is moved from its home to its initial configuration by applying
the initial condition information to the machine’s joints first. Then any
disassembled joints are assembled, leading to the assembled configuration.

During model assembly, SimMechanics might move bodies connected
by assembled joints from their initial positions in order to assemble the
disassembled joints. The SimMechanics solution to the assembly problem
cannot be predicted beforehand, except in simple cases. To prevent
SimMechanics from moving bodies during model assembly, use JICA blocks
to specify the initial positions of bodies whose positions you want to remain
fixed during the assembly process. This forces SimMechanics to find assembly
solutions that satisfy the initial conditions specified by the JICA blocks.

4-34

Modeling Joints

Disassembled Joint Example: Four Bar Mechanism
This example creates and runs a model of a disassembled four bar machine.

Refer to the tutorial, “Four Bar Mechanism” on page 2-36, and the
mech_four_bar demo:

1 Disconnect the Joint Sensor1 block from the Revolute3 block.

2 Replace Revolute3 with a Disassembled Revolute block from the
Joints/Disassembled Joints sublibrary.

3 Open the Disassembled Revolute dialog box and, under Axis of Action for
both Base and Follower axes, enter [0 0 1]. Close the dialog.

4 Open the Bar2 dialog box and dislocate the joint by displacing Bar2’s CS2
origin from Bar 3’s CS1 origin.

4-35

4 Modeling Mechanical Systems

Do this by entering a nonzero vector under Origin Position Vector [x
y z] for CS2, then changing the Translated from Origin of pull-down
entry to ADJOINING. CS1 on Bar3 is the Adjoining CS of CS2 of Bar2.
Close the dialog.

5 To avoid circular CS referencing, you must check the Bar3 dialog entry for
CS1 on Bar3. Be sure that CS1 on Bar3 does not reference CS2 on Bar2.
Reference it instead to CS2 on Bar3, which adjoins Ground_2.

6 Rerun the model.

Note that the motion is different from the manually assembled case.

Cutting Closed Loops
Simulink cannot solve models whose block diagrams contain closed loops. To
simulate a model containing closed loops, SimMechanics internally converts a
closed-loop model to an open-topology model, by cutting each of the model’s
closed loops once, at a joint, constraint, or driver block.

You can specify a joint to cut if the loop does not contain a disassembled joint,
constraint, or driver. To do this, open the joint’s dialog box and select the
Mark as the preferred cut joint check box on the Advanced pane in that
joint’s dialog Parameters area.

4-36

Modeling Joints

SimMechanics follows these loop-cutting rules.

• If a loop contains a constraint, driver, or disassembled joint, SimMechanics
cuts the loop at one of these blocks, regardless of your preferred cut joint.
Selecting a preferred cut joint has no effect in this case.

• If the loop does not contain a constraint, driver, or disassembled joint,
SimMechanics cuts the loop at the preferred cut joint if you have specified
one.

• Otherwise, SimMechanics cuts the loop at the joint with the most degrees
of freedom.

Note SimMechanics cuts a loop at a disassembled joint, constraint, or driver
if one or more of these is present, regardless of your preferred cut choice.

Displaying the Cut Joints
To display automatically cut joints in your model, select the Mark
automatically cut joints check box in the Diagnostics area of the
SimMechanics node of your model’s Configuration Parameters dialog.
See “Configuring SimMechanics Simulation Diagnostics” on page 5-12.

For More About Disassembled and Cut Joints
Refer to “Modeling with Disassembled Joints” on page 4-33 for more on
disassembled joints. Consult “Verifying Machine Topology” on page 4-74 to
see how SimMechanics analyzes closed loops in the model diagram.

For More About Constraints and Drivers
SimMechanics internally represents a cut Joint, Constraint, or Driver as an
invisible constraint. See “Modeling Constraints and Drivers” on page 4-38 for
more about these specialized blocks.

4-37

4 Modeling Mechanical Systems

Modeling Constraints and Drivers
The SimMechanics Constraints & Drivers Library provides a set of blocks
to model constraints on the relative motions of two bodies. You model the
constraint by connecting the appropriate Constraint or Driver block between
the two bodies. As with joints, the blocks each have a base and follower
connector port, with the body connected to the follower port viewed as moving
relative to the body connected to the base port. For example, the following
model constrains Body2 to move along a track that is parallel to the track
of Body1.

The blocks enable you to model time-independent constraints or
time-dependent drivers.

• Constraint and unactuated Driver blocks model scleronomic
(time-independent) constraints.

• Actuated Driver blocks (see “Actuating a Driver” on page 4-57) model
rheonomic (time-dependent) constraints.

Scleronomic constraints lack explicit time dependence; that is, their time
dependence appears only implicitly through the coordinates x. Rheonomic
constraints have explicit time dependence as well, in addition to implicit time
dependence through the x.

Holonomic constraint functions depend only on body positions, not velocities:

f tB F(, ;)x x = 0

Constraints of the form

g tB B F F(, , , ;)x x x x� � = 0

4-38

Modeling Constraints and Drivers

can sometimes be integrated into a form dependent only on positions; but if
not, they are nonholonomic. For example,

• The one-dimensional rolling of a wheel of radius R along a line (the x-axis)
imposes a holonomic constraint, x = Rθ.

• The two-dimensional rolling of a sphere of radius R on a plane (the
xy-plane) imposes a nonholonomic constraint, ds = R·dθ, with ds2 = dx2

+ dy2. This constraint is nonholonomic because there is not enough
information to solve the constraint independently of the dynamics.

What Constraints and Drivers Do
Constrained and driven bodies are still free to respond to externally imposed
forces/torques, but only in a way consistent with the constraints.

Constraints and drivers can only remove degrees of freedom from a machine.
Constraints and unactuated Drivers prevent the machine from moving in
certain ways. Unactuated Drivers hold the constrained degrees of freedom
between the connected pair of bodies in their initial state. Actuated Drivers
externally impose a relative motion between pairs of bodies, starting with the
bodies’ initial state. See “Counting Degrees of Freedom” on page 4-77.

This section discusses modeling constraints and drivers in a general way.

• “Directionality of Constraints and Drivers” on page 4-39

• “Solving Constraints” on page 4-40

• “Restrictions on Using Constraint and Driver Blocks” on page 4-40

The section ends with two examples, “Constraint Example: Gear Constraint”
on page 4-41 and “Driver Example: Angle Driver” on page 4-43.

See the reference pages for information on the specific constraint that a
Constraint or Driver block imposes.

Directionality of Constraints and Drivers
Like joints, constraints and drivers have directionality. The sequence of base
to follower body determines the directionality of the constraint or driver. The
directionality determines how the sign of Driver Actuator signals affects the

4-39

4 Modeling Mechanical Systems

motion of the follower relative to the base and the sign of signals output by
constraint and driver sensors.

Solving Constraints
When simulating a model, SimMechanics uses a constraint solver to find the
motion, given the model’s Constraint and Driver blocks. You can specify both
the constraint solver type and the constraint tolerances that SimMechanics
uses to find the constraint solution. See “Implementing Constraints” on page
5-6 for more information.

Mitigating Constraint Singularities
Some constraints, whether time-independent (Constraints) or time-dependent
(Drivers), can become singular when the constrained bodies take on certain
relative configurations; for example, if the two body axes line up when the
Bodies are connected by an Angle Driver. The simulation slows down as a
constraint becomes singular.

If you find a constrained model running slowly, consider selecting the
Use robust singularity handling option in the Constraints pane of
your machine’s Machine Environment block dialog. See “Handling Motion
Singularities” on page 5-9.

Restrictions on Using Constraint and Driver Blocks
The following restrictions apply to the use of Constraint and Driver blocks
in a model:

• Constraint and Driver blocks can appear only in closed loops.

• A closed loop cannot contain more than one Constraint or Driver block.

• A Constraint or Driver must connect exactly two Bodies.

4-40

Modeling Constraints and Drivers

Constraint Example: Gear Constraint
The mech_gears model illustrates the Gear Constraint. Open the Body and
Gear Constraint blocks.

Body1 and Body2 have their CG positions 2 meters apart. CS1 and CS2 on
Body1 are collocated with the Body1 CG, and similarly, CS1 and CS2 on
Body2 are collocated with the Body2 CG.

The Gear Constraint between them has two pitch circles. One is centered
on the CS2 at the base Body, which is Body1, and has radius 1.5 meters.
The other is centered on CS1 at the follower Body, which is Body2, and has
radius 0.5 meters. The distance between CS2 on Body1 and CS1 on Body2 is 2
meters. The sum of the pitch circle radii equals this distance, as it must.

Visualizing the Gear Motion
The model is set up to open the visualization feature automatically upon
simulation start, with MATLAB Graphics and convex hulls, as explained in

4-41

4 Modeling Mechanical Systems

“Introducing the SimMechanics Visualization Window” on page 6-11. Start
the simulation and watch the CG CS axis triads spin around. The CG triad
at Body2 rotates three times faster than the CG triad at Body1, because the
pitch circle centered on Body2 is three times smaller.

You can see the same behavior in the Scope. The upper plot shows the motion
of Revolute2, and the lower plot the motion of Revolute1. Note that angular
motion is mapped to the interval (-180o, +180o] degrees.

The Gear Constraint is inside a closed loop formed by

Ground_1–Revolute1–Body1–Gear Constraint–Body–Revolute2–Ground_2

Although Ground_1 and Ground_2 are distinct blocks, they represent different
points on the same immobile ground at rest in World. So the blocks form a
loop.

4-42

Modeling Constraints and Drivers

Driver Example: Angle Driver
The following two models illustrate the Angle Driver, both without and with a
Driver Actuator.

The Angle Driver Without a Driver Actuator
The first is mech_angle_unact. Open the Body2 block.

The bodies form a double pendulum of two rods. The Body Sensor is connected
to Body2 at CS3 = CS2 and measures all three components of Body2’s angular
velocity vector with respect to the ground.

The Angle Driver is connected between Body2 and Ground_2. Because the
Angle Driver is not actuated in this model, it acts during the simulation as a
time-independent constraint to hold the angle between Body2 and Ground_2
constant at its initial value.

Visualizing the Angle Driver Motion
The model is set up to open the visualization feature automatically upon
simulation start, with MATLAB Graphics and convex hulls, as explained in
“Introducing the SimMechanics Visualization Window” on page 6-11.

Start the simulation. The upper body swings like a pendulum, but the lower
body maintains its horizontal orientation with respect to the horizontal
ground. The Scope measures Body2’s angular velocity with respect to ground,
and this remains at zero.

4-43

4 Modeling Mechanical Systems

The Angle Driver With a Driver Actuator
The second model is mech_angle_act. Open the Driver Actuator block.

The Driver Actuator drives the Angle Driver block. Here, the Actuator accepts
a constant angular velocity signal from the Simulink blocks. The Actuator
also requires the angle itself and the angular acceleration, together with the
angular velocity, in a vector signal format. The Angle Driver’s angle signal
is added to the angle’s initial value.

The Body Sensor again measures three components of Body2’s angular
velocity with respect to the ground. Constant1 drives the angle at 15o/second.
While the simulation is running, this angle changes at the constant rate. At
the same time, the assembly and the constant length of the two pendulum
rods must be maintained by Simulink, while both rods are subject to gravity.
As the two axes line up, the mutual constraint between the bodies enforced
the Driver becomes singular. The simulation slows down.

As in the Gear Constraint model, the two Ground blocks in these models
represent points on the same immobile ground at rest in World, so the Angle
Driver is part of a closed loop.

4-44

Modeling Actuators

Modeling Actuators
The SimMechanics Actuators & Sensors Library provides a set of Actuator
blocks that enable you to apply time-dependent forces and motions to bodies,
joints, and drivers. You can also vary a body’s mass and inertia tensor.

Caution SimMechanics allows you to connect an Actuator to a Ground. But
it displays an error if you attempt to simulate or update a model containing
such a connection. This is because ground is immobile and cannot be actuated.

You can use Actuator blocks to perform the following tasks:

• Apply a time-varying force or torque to a body or joint. See “Actuating a
Body” on page 4-46 and “Actuating a Joint” on page 4-52.

• Specify the position, velocity, and acceleration of a joint or driver as a
function of time. See “Actuating a Joint” on page 4-52 and “Actuating a
Driver” on page 4-57.

• Specify the initial position and velocity of a joint primitive. See “Specifying
Initial Positions and Velocities” on page 4-57.

• Specify the mass and/or inertia tensor of a body as a function of time. See
“Varying a Body’s Mass and Inertia Tensor” on page 4-49.

In general, actuators can apply any combination of forces and motions to a
machine provided that

• The applied forces and motions are consistent with each other and with the
machine’s geometry, constraints, and assembly restrictions.

• It is possible to find a unique solution for the motion of each actuated
degree of freedom (DoF).

Stabilizing Numerical Derivatives in Actuator Signals
To actuate bodies, joints, and drivers, you often need to differentiate an
incoming Simulink actuation signal. A typical example is motion actuation
of a joint, which requires position, velocity, and acceleration of each joint

4-45

4 Modeling Mechanical Systems

primitive as a function of time. You specify this information as a set of
Simulink signals.

Simulink provides a Derivative block for numerical differentiation of a signal.
However, this block’s output is often not stable or accurate enough for use in
SimMechanics. Here are recommended alternatives to the Derivative block.

• To differentiate a signal, use a transfer function block (Transfer Fcn). This
block actually performs a combination of differentiation and integration
with a Laplace transform, acting to smooth the output, which is not exactly
the derivative.

• Start by specifying the highest-derivative signal (such as an acceleration),
then integrate this signal to obtain lower-derivative signals (such as
velocity and position) using the Integrator block.

The first method is illustrated by the mech_stewart_control model. For an
example of the second method, see the mech_body_driver model.

Actuating a Body
You can use the Body Actuator to apply forces and/or torques, but not motions,
to bodies. (You can apply motions to a body indirectly, using Joint Actuators.
See “Applying Motions to Bodies” on page 4-48.)

To actuate a body,

1 If there is not already an unused connector port available for the Actuator
create a Body CS port on the Body for the Actuator. See the Body block
reference if you need to learn how.

2 Drag a Body Actuator block from the Sensors & Actuators library into your
model and connect its output port to a Body CS port on the Body.

3 Open the Actuator’s dialog box.

4 Choose to apply a force or torque to the body:

• Select the Applied force check box if you want to apply a force to the
body, and select the units of force from the adjacent list.

4-46

Modeling Actuators

• Select the Applied torque check box if you want to apply a torque to
the body, and select the units of torque from the adjacent list.

5 Select the coordinate system used to specify the applied torque from the
With respect to CS list.

The list allows you to choose either the World CS or the Body CS of the port
to which you attached the Actuator.

6 Create vector signals that specify the value of the applied torque and force
at each time step.

You can use any Simulink source block (for example, an Input port block or
a Sine Wave block) or combination of Simulink blocks to create the Body
Actuator signal. You can also use the output of a Sensor block connected to
the Body as input to the Actuator, thereby creating a feedback loop. Such
loops are useful for modeling springs and dampers (see “Checking Model
Validity” on page 4-74).

7 Connect the force and/or torque signal to the input port of the Actuator.

If you are applying both a force and a torque to the body, connect the force
and torque signals to the inputs of a two-input Mux block. Then connect
the output of the Mux block to the input of the Actuator.

Body Actuator Example: Pure Kinetic Friction
The mech_ballistic_kin_fric model in the Demos library provides an
example of how to implement pure kinetic friction. This type of friction is a
continuous force that depends on a body’s motion relative to a medium (such
as air), as well as on physical characteristics of the body. Kinetic friction,
unlike “stiction,” involves no “sticking” or locking of motion, and the friction
is not discontinuous. While you could use the Joint Stiction Actuator, this
is not necessary. This model applies air friction or drag to a projectile with
a Body Actuator.

4-47

4 Modeling Mechanical Systems

Open the Air Drag subsystem. If you double-click the block, a mask dialog box
opens asking for the drag coefficient Cd. If you right-click the block and select
Look under mask, the subsystem itself appears:

The Air Drag subsystem computes the air friction according to a standard
air friction model. (See the Aerospace Blockset documentation for more
information.) The drag always opposes the projectile’s motion and is
proportional to the product of the air density, the projectile’s cross-sectional
area, and the square of its speed.

Run the model with the default drag coefficient (zero). The XY Graph window
opens to plot the parabolic path of the projectile. Now open the Air Drag
dialog again and experiment with different drag coefficients Cd. Start with
small values such as Cd = 0.05. For a rigid sphere, Cd is two. The effect of the
drag is dramatic in that case.

Applying Motions to Bodies
The Body Actuator block cannot actuate a Body with motion signals. But you
can construct such body motion actuators with a combination of other blocks.
See “Joint Actuator Example: Body Driver” on page 4-54.

4-48

http://www.mathworks.com/products/aeroblks/

Modeling Actuators

Varying a Body’s Mass and Inertia Tensor
The Variable Mass & Inertia Actuator block gives you a way to vary a body’s
mass and/or inertia tensor as external functions of time. You specify these
functions with incoming Simulink signals.

Caution The Variable Mass & Inertia Actuator block does not apply any
thrust forces or torques to the Body so actuated. Mass loss or gain in a
particular direction results in thrust forces and torques on the body. You must
apply these forces/torques to the Body separately with Body Actuator blocks.

The variable mass/inertia actuator affects a body’s motion only when you
apply forces/torques on the body. When a body’s motion is determined only
by initial conditions, changing the mass or inertia tensor of a body does not
affect its motion, because the variable mass/inertia actuator does not apply
forces/torques to the body.

The Variable Mass & Inertia Actuator block changes the actuated Body’s
mass and rotational inertia by attaching an invisible body to the actuated
body at a particular Body coordinate system (CS). This invisible body has a
mass and an inertia tensor that vary in time as specified by the Actuator’s
external Simulink signal. SimMechanics treats the actuated body and the
invisible body as a single composite body. The composite body has a new
mass, new center of gravity (CG), and new inertia tensor compounded from its
two constituent bodies.

4-49

4 Modeling Mechanical Systems

You can add multiple Variable Mass & Inertia Actuator blocks to one Body. In
that case, SimMechanics treats the actuated body and all attached invisible
bodies as a single composite body. This composite body’s mass, CG, and inertia
tensor are compounded from its constituent bodies.

Attaching Variable Mass and Inertia Bodies to a Visible Body

To vary the mass and/or inertia tensor of a Body with this Actuator:

1 From the Sensors & Actuators library, drag a Variable Mass & Inertia
Actuator block into your model.

2 Attach the Actuator’s connector port to the Body CS on the Body where you
want the invisible variable mass to be. If a suitable Body CS port does not
exist on the Body, open its dialog and create one.

3 Create an external Simulink signal to model the time-varying mass and/or
inertia tensor for this invisible body. Connect it to the Variable Mass &
Inertia Actuator block’s Simulink input port.

This Simulink signal can have one, nine, or ten components, depending on
whether you are varying the mass only, the inertia tensor only, or both.

4-50

Modeling Actuators

Example: Simple Rocket
The following model simulates a simple rocket. It treats the rocket as a point
mass moving upward (+y direction) with an exhaust pointing downward (-y
direction). The rocket loses mass at a constant rate.

The Rocket block is the point mass. The Thrust Velocity block represents the
downward exhaust and, multiplied by the mass loss represented by the Fuel
Loss block, actuates the Rocket body with a thrust force pointing upward. The
Thrust block (a body actuator) applies this force at the local Body CS, which,
for a point rocket, is identical to the Rocket’s CG CS.

The same mass loss from the Fuel Loss block that produces the thrust force
also must vary the rocket’s mass directly. The Variable Mass Actuator block
accomplishes this by feeding the same mass loss signal to the Rocket block.

4-51

4 Modeling Mechanical Systems

Actuating a Joint
You individually actuate each of the prismatic and revolute primitives of an
assembled joint with a Joint Actuator. You can apply

• Forces or translational motions (but not both) to prismatic primitives

• Torques or rotational motions (but not both) to revolute primitives

Caution You cannot actuate spherical or weld primitives, disassembled
joints, or massless connectors.

SimMechanics allows you to connect multiple Actuators to the same joint
primitive. But it halts and displays an error message if you attempt to update
or simulate a model containing such a connection.

Exception: You can apply a Joint Initial Condition Actuator and force or
torque actuation (including stiction) to the same primitive. You cannot apply
a Joint Initial Condition Actuator and motion actuation to the same primitive.
See “Specifying Initial Positions and Velocities” on page 4-57.

To actuate a prismatic or revolute joint primitive of an assembled joint:

1 Create an Actuator port on the Joint block for the primitive (see “Creating
Actuator and Sensor Ports on a Joint” on page 4-28).

2 Drag a Joint Actuator or Joint Stiction Actuator from the Sensors &
Actuators library into your model and connect its output port to the
Actuator port on the Joint.

The remaining steps in this procedure apply to the creation of a standard
Joint Actuator. For information on creating a stiction actuator, which
applies classical Coulombic friction to a prismatic or revolute joint, see the
Joint Stiction Actuator block reference page.

3 Open the Joint Actuator’s dialog box.

4 Select the primitive you want to actuate from the Connected to primitive
list on the dialog box.

4-52

Modeling Actuators

5 Select the type of actuation you want to apply from the Actuate with
pull-down menu, either Generalized Forces or Motion.

6 If you are actuating a prismatic primitive:

• If you selected Generalized Forces as the actuation type, select the
units of force from the Applied force units list.

• If you selected Motion as the actuation type, select the units for each
motion to be actuated (position, velocity, acceleration).

7 If you are actuating a revolute primitive:

• If you selected Generalized Forces as the actuation type, select the
units of torque from the Applied torque units list.

• If you selected Motion as the actuation type, select the units for each
motion to be actuated (angle, angular velocity, angular acceleration).

8 Click OK to apply your choices and dismiss the dialog box.

Each joint primitive that you motion-actuate is lost as a true degree of
freedom in your machine. That is because the DoF can no longer respond
freely to externally applied forces or torques. See “Counting Degrees of
Freedom” on page 4-77.

9 Create a signal that specifies the applied force, torque, or motions at each
time step.

You can use any Simulink source block or any combination of blocks to
create the actuator signal. You can also connect the output of a Sensor
block attached to the Joint to the Actuator input, thereby creating a
feedback loop. You can use such loops to model springs and dampers
attached to the joint.

A force or torque signal must be a scalar signal. A motion signal must be
a 1-D array signal comprising three components: position, velocity, and
acceleration. The directionality of the joint determines the response of the
follower to the sign of the actuator signal (see “Joint Directionality” on
page 4-24).

10 Connect the Actuator signal to the Actuator port on the Joint.

4-53

4 Modeling Mechanical Systems

Joint Actuator Example: Body Driver
The mech_body_driver model illustrates the use of Joint Actuators to create
a custom driver.

4-54

Modeling Actuators

The Body Driver subsystem accepts an 18-component signal that feeds the
coordinates, velocities, and accelerations for all six relative DoFs between
Body and Body1. The subsystem uses a Bushing block that contains three
translational and three rotational primitives to represent the relative DoFs:

You can modify the body driver to move only one of the bodies, thereby
creating a motion actuator. To move Body1 relative to World, for example,
remove the blocks Body and Weld and connect the subsystem Body Driver
directly to Ground.

4-55

4 Modeling Mechanical Systems

Joint Stiction Actuator Example: Mixed Static and Kinetic
Friction
The mech_dpen_sticky model in the Demos library illustrates a driven
double pendulum, with “sticky” friction or stiction applied to both revolute
joints with the Joint Stiction Actuator block.

Open the unmasked Joint1 or Joint2 Stiction Model blocks (marked in yellow)
to view the subsystems:

4-56

Modeling Actuators

Each Stiction subsystem contains a Joint Stiction Actuator block (marked
in orange) that requires static and kinetic friction coefficients via their
respective blocks. For either revolute, an angular velocity threshold, specified
through the block dialog, determines if a joint locks. Once locked, the joint
cannot move until a combination of forces reaches a threshold specified by the
Forward Stiction Limit or Reverse Stiction Limit.

Run the model with different kinetic and static friction coefficients and
different velocity thresholds. View the results in the Scope blocks and through
a visualization window. You can find more details on how stiction works in
SimMechanics by consulting the Joint Stiction Actuator block reference page.

Actuating a Driver
Actuating a Driver with a Driver Actuator allows you to specify the time
dependence of the rheonomic constraint applied by the Driver.

To actuate a Driver:

1 Create an additional connector port on the Driver for the Actuator.

Create the additional port in the same way you create an additional
Sensor/Actuator port on a Joint (see “Creating Actuator and Sensor Ports
on a Joint” on page 4-28).

2 Drag an instance of a Driver Actuator from the Sensors & Actuators library
into your model.

3 Connect the Actuator’s output port to the Actuator port on the Driver.

4 Create a signal that specifies the time dependence of the Driver constraint.

5 Connect the actuation signal to the input port of the Driver Actuator.

Specifying Initial Positions and Velocities
The Joint Initial Condition Actuator (JICA) block allows you to specify the
initial positions and velocities of unactuated joints and hence the bodies
attached to them. You can use JICA blocks to

• Specify nonzero initial joint velocities

4-57

4 Modeling Mechanical Systems

The default initial velocity of a joint primitive is zero. You must use a JICA
block to specify a joint’s initial velocity if the initial velocity is not zero.

• Override the initial position settings of a body pair

The CG CS origin settings in the dialog boxes of Body blocks specify the
bodies’ initial positions. Using JICA blocks, you can override these initial
body positions by resetting their relative positions in the Joints connecting
them.

When your model simulation starts, SimMechanics first puts your machines
into their home configurations with the Body dialog data. It then moves your
machines to their initial configurations by applying JICA data.

Caution You cannot simultaneously actuate a joint primitive with a Joint
Initial Condition Actuator and motion actuation from a Joint Actuator block.

Using JICA Blocks
Specifying initial conditions on a joint primitive is a special kind of actuation,
one that occurs only once at the beginning of simulation. That is why the
JICA block resides in the Sensors & Actuators library.

Note A JICA block, unlike other Actuators, does not have an input port. The
JICA’s dialog box specifies the Actuator input completely.

With a JICA block, you can specify the initial positions and velocities of any
combination of prismatic and revolute primitives within a given Joint. (You
cannot specify ICs for spherical and weld primitives.)

To specify the initial velocity and/or position of a joint primitive:

1 Drag a JICA block from the Sensors & Actuators library and drop it into
your model window.

2 Create an additional connector port on the Joint block containing the
primitive whose initial condition you want to specify.

4-58

Modeling Actuators

3 Connect the connector port on the JICA block to the new connector port on
the Joint block.

Caution Do not connect the JICA block to the Joint ports marked "B" or
"F" (base or follower). These ports are intended for connecting to Bodies.

4 Open the JICA block’s dialog box. From the primitive list for the Joint,
choose the primitives you want to actuate by selecting their check boxes.

5 Enter the initial positions of the actuated primitives, relative to the Body
CSs attached to the Joint, in the Position field.

From the pull-down menu on the right, select Units for the initial positions.

6 Enter the initial velocities of the actuated primitives, relative to the Body
CSs attached to the Joint, in the Velocity field.

From the pull-down menu on the right, select Units for the initial velocities.

7 Click Apply or OK.

JICA Example: A Simple Pendulum
Open mech_spen from the Demos library, then open the Sensors & Actuators
library. Follow the steps from the preceding section, “Using JICA Blocks”
on page 4-58, to connect one Joint Initial Condition Actuator block to the
Revolute block and configure it. This Joint contains only one primitive, R1,
which is the primitive listed in the JICA dialog box.

4-59

4 Modeling Mechanical Systems

Set the initial conditions in two ways and compare the resulting simulations
in the scope:

1 First set the initial Position (angle) to 60 deg, which is 60o down from
the left horizontal (30o clockwise from vertically down), and set the initial
Velocity to 0 deg/s.

4-60

Modeling Actuators

2 Run the simulation for one second. Note in the scope that the initial angle
(yellow curve) is displaced upward to 60o, while the initial velocity (purple
curve) still starts at zero.

3 Now reset the initial Velocity to 30 deg/s, leaving the initial Position
(angle) at 60 deg.

4 Rerun the simulation for one second. Note in Scope that the initial angle
is still displaced upward to 60o, but the initial velocity is also displaced
upward to 30o/sec.

4-61

4 Modeling Mechanical Systems

The joint directionality is assigned in mech_spen so that the positive rotation
axis is the +z-axis. Looking from the front, positive rotation swings down
and right, counterclockwise.

4-62

Modeling Sensors

Modeling Sensors
The SimMechanics Sensors & Actuators library provides a set of Sensor
blocks that enable you to measure

• Body motions (see “Sensing Body Motions” on page 4-63)

• Joint motions and forces or torques on joints (see “Sensing Joint Motions
and Forces” on page 4-65)

• Constraint reaction forces and torques (see “Sensing Constraint Reaction
Forces” on page 4-65)

Note You can feed Sensor output back into Actuator blocks to model springs,
dampers, and other mechanical devices that depend on force feedback. See
“Actuating a Body” on page 4-46, “Actuating a Joint” on page 4-52, “Modeling
Force Elements” on page 4-69, and “Checking Model Validity” on page 4-74.

Home Configuration and Position-Orientation
Measurements
The Body and Joint Sensor blocks can measure the position and/or orientation
of bodies and degrees of freedom. They make these measurements relative
to the home configuration of the machine, the machine state before the
application of initial condition actuators and assembly of disassembled joints.
Thus motion sensors include the effect of the latter, which act before the
simulation starts.

For further discussion, see “Modeling with Disassembled Joints” on page 4-33
and “Specifying Initial Positions and Velocities” on page 4-57, and “Kinematics
and the Machine’s State of Motion” on page 3-2.

Sensing Body Motions
To sense the position, velocity, or acceleration of a body represented by a
Body block with a Body Sensor:

4-63

4 Modeling Mechanical Systems

1 If the Body block does not have a spare local coordinate system with a
Body CS port, create one (see “Managing Body Coordinate Systems” on
page 4-18).

2 Drag a Body Sensor block from the Sensors & Actuators library into your
model.

3 Connect its connector port to a spare Body CS port on the Body.

4 Open the Sensor’s dialog box.

5 Select the coordinate system relative to which the sensor measures its
output from the With respect to CS list.

6 Select the check boxes next to the motions that you want to sense (see the
Body Sensor block reference page).

7 If you have chosen to sense more than one type of motion and want the
Sensor to multiplex the motions into a single output signal, select the
Output selected parameters as one signal check box.

4-64

Modeling Sensors

8 Click OK or Apply.

9 Connect the output of the Body Sensor block to a Simulink Scope or other
signal sink or to a motion feedback loop, depending on your needs.

Sensing Joint Motions and Forces
The Joint Sensor block enables you to measure the motions of degrees of
freedom. It can also measure the relative forces and torques between the
bodies connected to the joint. These include the computed force or torque (the
force or torque needed to reproduce the joint’s motion) and the reaction force
and torque on a joint primitive. (You cannot measure the computed force or
torque on a spherical or weld primitive.) You must connect a separate Joint
Sensor block to a Joint block for each joint primitive that you want to sense.

To sense the motions, forces, and torques of a joint primitive contained by a
Joint block:

1 If the Joint block does not have a spare Sensor port, create one (see
“Creating Actuator and Sensor Ports on a Joint” on page 4-28).

2 Drag a Joint Sensor block from the Sensors & Actuators library into your
model.

3 Connect its connector port to the spare Sensor port on the joint.

4 Use the Sensor’s dialog box to configure the Sensor to measure the motions,
forces, and torques that you want to measure (see the Joint Sensor block
reference page).

5 Connect the output of the Joint Sensor block to a Simulink Scope or other
signal sink or to a motion feedback loop, depending on your needs.

Sensing Constraint Reaction Forces
The Constraint & Driver Sensor block enables you to measure the reaction
forces and torques induced on the constraints modeled by SimMechanics
Constraint and Driver blocks.

To sense the reaction force and/or torque induced by a constraint or driver,

1 If the Constraint or Driver does not have a spare Sensor port, create one.

4-65

4 Modeling Mechanical Systems

2 Drag a Constraint & Driver Sensor block from the Sensors & Actuators
library into your model.

3 Connect its connector port to a Sensor port on the Constraint or Driver
block.

4 Open the Sensor block’s dialog box.

5 Select the body (follower or base) on which to measure the reaction force
from the Reactions measured on list.

6 Select the coordinate system relative to which the Sensor measures its
output from the With respect to coordinate system list.

7 Select the Reaction torque check box if you want the Sensor to output
the reaction torque on the base (or follower) body.

8 Select the Reaction force check box if you want the Sensor to output the
reaction force on the base (or follower) body.

9 If you have chosen to output both reaction force and torque and want the
Sensor to multiplex them into a single output signal, select the Output
selected parameters as one signal check box.

4-66

Modeling Sensors

10 Click OK or Apply. Connect the output of the Constraint & Driver Sensor
block to a Simulink Scope or other signal sink or to a motion feedback
loop, depending on your needs.

Not all the reaction force/torque components are significant. Only those
components projected into the subspace of constrained or driven degrees of
freedom (DoFs) are physical. Components orthogonal to the constrained or
driven degrees of freedom are not physical.

Example: Linear Driver
In this example, you drive a body along the x-axis, but only allow it a prismatic
DoF tilted at an angle in the x-y plane. Construct the following model.

Configure the Constraint & Driver Sensor to measure only the reaction force,
not the torque. Configure the Linear Driver to drive the Body along the World
x-axis, but set up the Prismatic with a primitive axis along (1, 2, 0). The body
can then move only along this axis, but is driven along the horizontal x-axis.
Measure all motions and forces in World. Leave all other settings at default.

Open the Scopes and run the model. The measured reaction force lies along
the x-axis, with a value of -19.62 N (newtons). Because the constrained DoF
is not parallel to the x-axis, you need to project the reaction force along the

unit vector (1, 2, 0)/ 5 defining the direction of the prismatic primitive to
obtain the physical part.

4-67

4 Modeling Mechanical Systems

Add to the model the Simulink blocks that form a dot product between the
reaction force signal (three components) and the prismatic unit vector (also
three components). (You can define a workspace vector for this axis and use
it in both the joint and the dot product.) Reconnect Scope1 to measure this
physical component of the reaction force.

The physical component of the reaction force is -(19.62 N)·(1/ 5) = -8.77 N.
The component of the reaction force orthogonal to (1, 2, 0) is not physical.

4-68

Modeling Force Elements

Modeling Force Elements
Internal forces are forces the machine applies to itself as a result of its own
motion. Unlike actuation forces, you do not apply these forces from outside
the machine with Simulink signals. The body motions instead generate the
forces and torques directly.

The Force Elements library provides ready-made blocks to represent certain
kinds of internal forces and torques acting between bodies.

• “Inserting a Linear Force Between Bodies” on page 4-69

• “Inserting a Linear Force or Torque Through a Joint” on page 4-71

You can also create your own customized sensor-actuator feedback loops to
model springs, dampers, and more complex internal forces.

• “Customizing Force Elements with Sensor-Actuator Feedback” on page 4-72

Inserting a Linear Force Between Bodies
A generalized linear force between two bodies is a linear function of the two
bodies’ relative displacement vector r and relative velocity v, with constant
coefficients. The Body Spring & Damper block models a force acting between
two bodies along the axis r connecting them:

F = -k(r - r0) - bv||

The block is connected on either side to Bodies at a Body coordinate system
(CS). The displacement r is a vector from one Body CS on one Body to the
other Body CS on the other Body. Newton’s third law requires that the forces
that the bodies exert on one another be equal and opposite.

The common physical system this force model represents is a spring-damper
combination, where the damper is a dashpot acting only along the spring
axis. The damping is solely a function of the component v|| of the velocity
vector projected along the displacement r. (Thus the damping in this block
cannot represent the damping due to a viscous medium, because there is no
damping force perpendicular to the spring axis. See “Inserting a Linear Force
or Torque Through a Joint” on page 4-71.)

4-69

4 Modeling Mechanical Systems

You enter the constant parameters r0, k, and b in the Body Spring & Damper
dialog. r0 is the spring’s natural length, the length it has when no forces
are acting on it. The spring constant k and damping constant b should be
nonnegative.

To complete a linear force model between bodies, you need to model the
translational degrees of freedom (DoFs) between them, as the Force Element
block itself does not represent these DoFs. You can use any Joint block
containing at least one prismatic primitive to represent translational motion.
The two Bodies, the Joint, and the Body Spring & Damper must form a
closed loop.

The following block diagram represents two Bodies with a damped spring
between them. The Custom Joint represents the bodies’ relative translational
DoFs with three prismatic primitives. In this case, CS2 and CS3 on Body1
are the same, and CS2 and CS3 on Body2 are the same. Thus, the Joint is
connected to the same Body CSs that define the ends of the spring-damper
axis.

4-70

Modeling Force Elements

Inserting a Linear Force or Torque Through a Joint
Another way of inserting a linear force element between two bodies is to
connect it to a joint that already connects the bodies. You have to apply the
force element, like an actuator, to each primitive in the joint individually. This
approach has several advantages over the Body Spring & Damper:

• You can create a different force law, with a different spring length, spring
constant, and damping constant, for each of the joint’s primitives.

• The spring and damper forces acting on each primitive act independently
in their respective directions, instead of depending on just the interbody
distance with a single spring length, spring constant, and damping
constant.

This allows you to create spring and damping forces that act independently
in two or three dimensions, unlike the Body Spring & Damper force, which
acts only along a single axis. Damping forces acting on multiple primitives
act as a two- and three-dimensional viscous medium, not as a dashpot.

• The joint representing the DoFs between the bodies is already present.

You use the Joint Spring & Damper block to implement such spring-damper
forces/torques together with a Joint. With it, you can apply a linear spring
and damper force to each prismatic primitive and a linear torsion and damper
torque to each revolute primitive in a Joint block. (You cannot apply these
torques to a spherical primitive.)

Pick a Joint already connected between two Bodies. You connect the Joint
Spring & Damper block to a Joint block at a sensor/actuator port on the Joint.
(The section “Actuating a Joint” on page 4-52 explains how to create such a
port.) The Joint Spring & Damper dialog then lists each primitive in the Joint.

For each prismatic primitive you want to actuate with a spring-damper
force, you specify a natural spring length (offset), spring constant, and
damping constant. For each revolute primitive you want to actuate with a
torsion-damper torque, you specify a natural torsion angle (offset, or angle in
which the primitive points absent any torques), torsion constant, and damping
constant. You make these specifications in the Joint Spring & Damper dialog.

Here are two bodies connected by a Custom Joint in turn connected to a Joint
Spring & Damper block.

4-71

4 Modeling Mechanical Systems

Unlike the example in the preceding section, “Inserting a Linear Force
Between Bodies” on page 4-69, the Custom Joint can have up to three
prismatics and three revolutes, each with a separate linear force or torque
acting through it. Each force or torque acts equally and oppositely on each
body, following Newton’s third law.

Customizing Force Elements with Sensor-Actuator
Feedback
You can create your own force elements acting through Joints or on Bodies
by using Sensor-Actuator feedback loops. With this technique, you can not
only model linear forces, but any force that depends on body or joint positions
and velocities.

This simple example illustrates the method with a linear spring force law.
Hooke’s law states that the force exerted by an extended spring is proportional
to its displacement from its unextended position: F = -kx.

The following SimMechanics model represents a spring that obeys Hooke’s
law.

4-72

Modeling Force Elements

The model uses the Gain block labeled Spring Constant to multiply the
displacement of the prismatic joint labeled Spring along the World’s y-axis by
the spring constant -0.8. The output of the Gain block is the force exerted
by the spring. The model feeds the force back into the prismatic joint via the
Actuator labeled Force. The model encapsulates the spring block diagram in a
subsystem to clarify the model and to allow a spring to be inserted elsewhere.

4-73

4 Modeling Mechanical Systems

Checking Model Validity
Simulink can simulate a SimMechanics model only if it is valid. A model is
valid if it satisfies the following rules:

• Each machine in the model contains at least one Ground, and exactly one
Ground in each machine is connected to a Machine Environment block.
Each submachine connected to a full machine by a Shared Environment
block must have at least one Ground.

See “Modeling Machines” on page 4-3.

• Every machine in the model is topologically valid. See “Verifying Machine
Topology” on page 4-74.

• The model contains at least one degree of freedom. See “Counting Degrees
of Freedom” on page 4-77.

Verifying Machine Topology
To avoid simulation failures, you must ensure that the topology of your block
diagram is valid. A block diagram is topologically valid if each machine that
it contains is valid. A machine is valid if its spanning tree is valid. Thus to
determine if your model is valid, first determine the spanning tree of each
machine that it contains and then the validity of each resulting tree.

Machine Topology and Subsystems
When examining your model’s topology, be sure to inspect all its subsystems,
including masked subsystems, down to the bottom of the model’s subsystem
hierarchy.

Determining a Machine’s Spanning Tree
To determine the spanning tree of a machine, remove all blocks from the
machine except Body and Joint blocks and open every closed loop in the
resulting reduced machine. To open a closed loop, follow the loop-cutting rules
in “Cutting Closed Loops” on page 4-36.

4-74

Checking Model Validity

For example, here is a machine with two closed loops.

Cutting the top loop at the Disassembled Prismatic and removing the Parallel
Constraint block (thus simultaneously cutting the bottom loop) yields the
machine’s spanning tree, as shown here.

4-75

4 Modeling Mechanical Systems

Determining the Validity of a Spanning Tree
To be valid, a spanning tree must meet these requirements:

• The spanning tree must have at least one Ground block to serve as a
reference to World.

• Every Joint block must be connected to exactly two Body blocks.

• Every non-Ground Body block must have a unique path to a Ground block.
(This need not be true of the machine itself.) This ensures that, while each
body moves via joints relative to other bodies, SimMechanics can resolve all
bodies’ motions into absolute motions with respect to World.

• Every non-Ground Body block at an end of a sequence of Bodies must
have nonzero inertia (mass or inertial moment) associated with all joint
primitives that can move. Each translational DoF must carry a nonzero
mass, and each rotational DoF a nonzero inertial moment. This prevents
infinite accelerations when forces and torques are applied.

Examples of Invalid Machine Topologies
Here are some examples of invalid topologies:

• This one-loop machine lacks a Ground block.

4-76

Checking Model Validity

• This open machine has a dangling Joint block.

• Another open machine features a zero-mass body at one end of a chain
of bodies.

The last two invalid examples are dynamically (but not topologically)
equivalent, because a zero-mass body is dynamically no body at all.

Counting Degrees of Freedom
Identifying and counting the independent degrees of freedom (DoFs) of
a machine are important for trimming and linearizing SimMechanics
models (see “Trimming Mechanical Models” on page 8-18 and “Linearizing
Mechanical Models” on page 8-32) and for correcting simulation errors (see
“Troubleshooting Simulation Errors” on page 5-17).

4-77

4 Modeling Mechanical Systems

Your SimMechanics model must have at least one DoF to be valid. A free
physical body has six DoFs: three translational and three rotational. But in
a machine, connections between bodies by joints, constraints, and drivers,
and motion actuation by joint and body actuators reduce the machine’s
independent DoFs to a smaller number. You also reduce a body’s DoFs if you
confine the machine’s motion to one or two spatial dimensions.

In SimMechanics, a Body block has no DoFs. Connecting Joints to a Body
adds DoFs to the machine. The joint primitives represent the Body’s DoFs
relative to other connected Bodies or Grounds. Connecting Constraint and
Driver blocks to Bodies or motion-actuating joint primitives in Joints removes
DoFs from the machine. A locked Joint Stiction Actuator also removes a DoF.

Degrees of Freedom in Subsystems
When you examine your model to identify and count its DoFs, be sure to open
and inspect all its subsystems, including masked subsystems, to the bottom
of the model’s subsystem hierarchy.

Finding Independent Degrees of Freedom
Here is the formula for determining the number of independent DoFs your
model has:

of independent DoFs = # of body DoFs + # of primitive DoFs -
of motion restrictions

The following three steps define each term on the right side:

1 Calculate the number of body DoFs from the number of Body and Joint
blocks in your model:

of body DoFs = 6 * (number of Bodies - number of Joints)

If you have confined the machine to move in only two dimensions, replace
the 6 by 3. If you have confined the machine to move in only one dimension,
replace the 6 by 1.

2 Calculate the number of primitive DoFs by adding up the primitive DoFs
from the Joint dialog boxes:

4-78

Checking Model Validity

• Count one for each prismatic (P) or revolute (R) primitive.

• Count three for each spherical (S) primitive.

• Count zero for each weld (W) primitive.

Do not count a primitive DoF that is motion-actuated by a Joint Actuator.

3 Calculate the number of motion restrictions by adding up the motion
restrictions of each Constraint and Driver block and from each locked Joint
Stiction Actuator. Different blocks from the Constraints & Drivers library
impose different numbers of motion restrictions. Stiction actuators apply to
individual joint primitives.

Constraint Block Restrictions Driver Block Restrictions

Gear One Angle One

Parallel Two Distance One

Point-Curve Two Linear One

Velocity One

Be sure not to count redundant motion restrictions. These are restrictions
that forbid the motion of joint primitives that could not move anyway even
if the constraint were removed, because of how the joints are configured.

Example: A body is connected to a ground by a single prismatic. You place
a constraint on the body that prevents it from moving perpendicularly to
the prismatic axis. The body could not move in that direction even if you
removed the constraint. So the constraint is redundant, and you would
not count it as a motion restriction.

The Role of Joint Stiction Actuators
A Joint Stiction Actuator can remove or restore a DoF during a simulation. It
is the only block that can change the number of independent DoFs after you
start simulating. You must count an additional motion restriction during the
period when a stiction-actuated primitive is locked. The primitive counts as
another DoF if it is unlocked.

4-79

4 Modeling Mechanical Systems

DoF Example: Double Pendulum
The mech_dpen model from the Demos library represents planar double
pendulum motion actuated by a Joint Actuator.

The double pendulum has two rigid bodies, such as two rods, confined to move
in two dimensions. Ignoring the Joint Actuator temporarily, there are two
bodies, two joints, and two revolute primitives, and thus 3 * (2 - 2) + 2 = 2
independent DoFs. There are many ways to represent these two DoFs, but
the two revolute primitives are the simplest way.

Including the Joint Actuator in the DoF count removes the revolute primitive
in the Revolute block as an independent DoF. So this model actually only has
one independent DoF, the revolute primitive in the Revolute1 block.

DoF Example: Four Bar Mechanism
The example in “Four Bar Mechanism” on page 2-36 has four revolutes. You
can establish that only 3 * (3 - 4) + 4 = 1 of these DoFs is actually independent
and arrive at the same result obtained in the example.

4-80

5

Running Mechanical Models

SimMechanics gives you multiple ways to simulate and analyze machine
motion in the Simulink environment. Running a mechanical simulation is
similar to running a simulation of any other type of Simulink model. It entails
setting various simulation options, starting the simulation, and dealing with
simulation errors. See the Simulink documentation for a general discussion
of these topics. This chapter focuses on aspects of simulation specific to
SimMechanics models.

Running SimMechanics Models in
Simulink (p. 5-2)

Overview of configuring Simulink
and SimMechanics to simulating
mechanical systems

Configuring a Machine’s Mechanical
Environment (p. 5-3)

Special settings in SimMechanics for
running mechanical models

Controlling the Simulation (p. 5-11) Configuring Simulink to run
mechanical models

How SimMechanics Works (p. 5-15) How SimMechanics analyzes and
simulates a mechanical model

Troubleshooting Simulation Errors
(p. 5-17)

Interpreting and fixing
SimMechanics simulation errors

Improving Performance (p. 5-23) Enhancing SimMechanics
simulation speed and accuracy

Generating Code (p. 5-28) Using Real-Time Workshop® to
translate your SimMechanics models
into code

Limitations (p. 5-33) How to use compatible Simulink
simulation tools with SimMechanics
models

5 Running Mechanical Models

Running SimMechanics Models in Simulink
Simulink provides an extensive set of simulation options that apply to any type
of model. SimMechanics provides additional options that apply specifically
to simulating mechanical models. This chapter discusses those standard
Simulink options for which mechanical models entail special consideration
and the additional mechanical system-specific options of SimMechanics.

Distinguishing Models and Machines
Following the distinction introduced in “Modeling Machines” on page 4-3,
SimMechanics requires you to make two categories of settings, one for each
machine in a model and one for the entire model.

• “Machine Settings via the Machine Environment Block” on page 5-2

• “Model-Wide Settings via Simulink” on page 5-2

The first uses the Machine Environment block dialog, the second the Simulink
Configuration Parameters dialog. To configure a mechanical model for
simulation, you need to interact with both dialogs.

Machine Settings via the Machine Environment Block
Mechanical settings for a specific machine are located in that machine’s
connected Machine Environment block. This block controls the machine’s
mechanical environment, including simulation dynamics, machine
dimensionality, gravity, tolerances, constraints, motion analysis modes, and
visualization. See “Configuring a Machine’s Mechanical Environment” on
page 5-3 for details.

Model-Wide Settings via Simulink
Mechanical and general settings for an entire model are located in the
Simulink Configuration Parameters dialog. Every node in this dialog
is relevant to controlling your model’s simulation, including visualization.
At a minimum, you need to examine the settings in the Solver and
SimMechanics nodes. See “Controlling the Simulation” on page 5-11 for
details.

5-2

Configuring a Machine’s Mechanical Environment

Configuring a Machine’s Mechanical Environment
Each machine in your model has a connected Machine Environment block.
This block controls the mechanical environment for that machine. Unless
otherwise noted, this section refers exclusively to this block’s dialog.

• “The Machine Environment Block” on page 5-3

The Machine Environment settings include the following:

• “Setting Gravity” on page 5-3

• “Choosing Your Machine’s Dimensionality” on page 5-4

• “Setting Assembly Tolerances” on page 5-5

• “Implementing Constraints” on page 5-6

• “Analyzing the Motion” on page 5-7

• “Handling Motion Singularities” on page 5-9

The Machine Environment Block
Every machine in your model requires exactly one Machine Environment
block to be connected to one of its Ground blocks. The settings that you enter
in that Machine Environment block determine the mechanical environment
for that machine only. Other machines are controlled by their respective
Machine Environment blocks.

This section guides you through the major choices you implement through
this dialog’s four panes. See the Machine Environment reference page for a
complete description.

Setting Gravity
A uniform gravity field is applied to the motion of every machine. The default
is a constant vector of [0 -9.81 0] with units of meters/seconds2 and x-,
y-, and z-components, respectively.

You can change this value to a different constant vector by modifying the
entry in the Gravity vector field of the Parameters pane of the Machine

5-3

5 Running Mechanical Models

Environment dialog. You can change the units by using the units pull-down
menu.

Gravity as an External Simulink Signal
In addition to constant gravity, SimMechanics lets you apply a time-varying,
albeit spatially uniform, gravity vector through a Simulink signal. You
enable this option by selecting the Input gravity as signal check box in
the Parameters pane.

Once you make this selection, the Machine Environment block acquires
a Simulink inport to accept this Simulink signal. The signal must be a
three-component vector. You can still change the units through the pull-down
menu.

Choosing Your Machine’s Dimensionality
In general, you simulate machine motion in all three spatial dimensions. If
a machine can move in only two dimensions, however, ignoring the third
dimension makes the simulation more efficient. By default, SimMechanics
automatically determines whether your machine moves in all three or only
two dimensions and optimizes the simulation accordingly.

You can override this default by requiring SimMechanics to simulate in either
three or two dimensions. You choose the simulation dimension of a machine
in the Machine dimensionality pull-down menu of the Parameters
pane of the Machine Environment dialog. If you attempt to simulate a
three-dimensional machine in two dimensions, the simulation stops with
an error.

Determining the Dimensionality of Your Machine Manually
Your machine must meet certain criteria before SimMechanics can simulate
it in two dimensions:

• The prismatic primitives must define a set of parallel planes.

• The revolute primitives must rotate about axes perpendicular to the
prismatic planes.

5-4

Configuring a Machine’s Mechanical Environment

The bodies of a two-dimensional machine do not all have to lie in a single
plane, but they should only slide and rotate in parallel planes.

Blocks That Require Three-Dimensional Simulation
The SimMechanics library contains certain blocks that, if you use them in a
machine, require you to simulate in three dimensions.

• Any Joint block with more than two prismatic primitives, more than one
revolute primitive, or any spherical primitives

• Disassembled Joints

• Massless connectors

Code Generated from Two-Dimensional Models
Code generated from simulations restricted to two-dimensional motion is also
restricted to two-dimensional motion. See “Restrictions on Two-Dimensional
Simulation” on page 5-34.

Setting Assembly Tolerances
The linear and angular assembly tolerance specify the precision with which

• A model must specify the initial locations and angles of a machine’s joints.

• SimMechanics must solve the initial positions and angles of a machine’s
unassembled joints.

The Parameters pane of Machine Environment allows you to change
the default assembly tolerances in the Linear assembly tolerance and
Angular assembly tolerance fields. You can also adjust the linear and
angular units in the respective pull-down menus.

How SimMechanics Implements Assembly Tolerances
SimMechanics checks the locations and angles of a machine’s assembled joints
when it initializes the model and later during the simulation. If any of the
joint locations or angles fails to meet the corresponding assembly tolerances,
Simulink halts the simulation and displays an error message. If this happens,
you should check your machine to ensure that it specifies the locations and

5-5

5 Running Mechanical Models

angles of its assembled joints to the precision specified in the Parameters
pane. If not, either change the locations and angles that fail to meet the
assembly tolerances or increase the tolerances themselves.

Implementing Constraints
If your machine contains implicit or explicit constraints on a system’s motion,
SimMechanics uses one of the three possible constraint solvers to find a
solution for the motion that meets the constraints:

• Stabilizing solver

• Tolerancing solver

• Machine precision solver

This section describes the constraint solvers. These constraint choices are
found on the Constraints pane of the Machine Environment dialog. If you
choose the tolerancing solver, you must also specify the constraint tolerances.

Stabilizing Constraint Solver
This solver adds a self-correcting term to the equations of motion that
stabilizes the numerical solution, i.e., causes it to evolve toward, rather than
drift away from, the actual solution. SimMechanics uses this solver by default.
It is typically faster than the other solvers, but can settle into a solution that
exceeds the machine’s assembly tolerances. If assembly tolerance errors occur
during the simulation, use one of the other solvers instead.

Tolerancing Constraint Solver
This solver finds the system’s motion while imposing the constraints to the
tolerance that you specify. Specifically, the solver stops refining the solution
when the difference between two successive solutions satisfies the condition

|error| < max(|rtol * x|, atol)

where error is the difference between successive solutions, rtol is the relative
constraint tolerance, x is the motion to be solved, and atol is the absolute
constraint tolerance. See “Setting Constraint Tolerances” on page 5-7
following.

5-6

Configuring a Machine’s Mechanical Environment

This solver is recommended if you plan to run the simulation in Kinematics
mode. It is more accurate than the stabilizing solver, but less accurate than
the machine precision solver, with a computational efficiency in between the
two.

Setting Constraint Tolerances
If you use the tolerancing solver, the constraint tolerances that SimMechanics
uses are under your control. You can view and change the constraint
tolerances in the Relative tolerance and Absolute tolerance fields of
the Constraints pane.

Machine-Precision Constraint Solver
Solves the constraints to the numerical precision of the computer on which
the simulation is running. Select this solver if you want to obtain the most
accurate simulation permitted by the computer, regardless of simulation time.

Analyzing the Motion
You can use SimMechanics to compute

• The motion that results from applying forces to a mechanical system
(forward dynamics)

• The forces required to produce a specified motion in a mechanical system
(inverse dynamics)

• The steady-state motion of a mechanical system (trimming)

• The effect of slightly perturbing a mechanical system’s motion
(linearization)

To compute any of these results, you must build an appropriate model and
choose an appropriate mode of motion analysis.

Choosing an Analysis Mode
The Parameters pane of the Machine Environment dialog allows you to
choose the analysis mode you want to simulate in. You make this choice via
the Analysis mode pull-down menu.

5-7

5 Running Mechanical Models

Forward Dynamics Mode
This mode computes the positions and velocities of a system’s bodies at each
time step, given the initial positions and velocities of its bodies and any forces
applied to the system. Use this mode to simulate a model that represents
the initial positions and velocities of the system’s bodies and the forces on
those bodies.

Run these examples in the Forward Dynamics mode:

• “Running a Demo Model” on page 1-5

• “Building a Simple Pendulum” on page 2-11 and “Four Bar Mechanism”
on page 2-36

as well as the many examples of Chapter 4, “Modeling Mechanical Systems”.

Inverse Dynamics Mode
This mode computes the forces required to produce a specified velocity for
each body of an open-loop system. Use this mode to simulate an open-loop
system whose model specifies the velocity of every degree of freedom of every
body at every time step.

See “Inverse Dynamics Mode with a Double Pendulum” on page 8-8 for an
example of using this mode to find the forces on an open-loop system.

Kinematics Mode
Computes the forces required to produce a specified velocity for each body of
a closed-loop system. Use this mode to simulate a closed-loop system whose
model specifies the velocity of every independent degree of freedom at every
time step. The tolerancing constraint solver is recommended in this mode.
(See “Implementing Constraints” on page 5-6.)

See “Inverse Dynamics Mode with a Double Pendulum” on page 8-8 for an
example of using this mode to find the forces on a closed-loop system.

5-8

Configuring a Machine’s Mechanical Environment

Trimming Mode
This is a variant of Forward Dynamics mode that allows you to run the
Simulink trim command on your model. The trim command in turn allows
you to find steady-state solutions for your model.

Trimming mode inserts a subsystem and an output port at the top level of
your model. These blocks output signals corresponding to the constraints on
the system represented by your model. Configure the trim command to find
equilibrium points where the constraint signals are zero. This ensures that
the equilibrium points found by the trim command satisfy the constraints on
the modeled system.

See “Trimming Mechanical Models” on page 8-18 for examples of using this
mode to find the equilibrium points of a mechanical system.

Special Settings If You Linearize a Machine
You can determine the effect of small perturbations on system motion by
linearizing your machine. To linearize, set the analysis mode to Forward
Dynamics and run the Simulink linmod command on your model.

You can fix the size of the perturbation or let SimMechanics find an optimal
perturbation for you. Enter these settings in the Linearization pane.

See “Linearizing Mechanical Models” on page 8-32 for examples of using this
mode to find the effect of small perturbations on mechanical motion.

Handling Motion Singularities
At certain simulation times, one or more degrees of freedom in a mechanical
system might change relatively quickly compared to the others. If these
sudden, quick motions are too fast compared to the slower motions, Simulink
and SimMechanics have difficulty finding an accurate solution in a reasonable
simulation time. Imposing constraints on the motion often exacerbates this
problem. In extreme cases, the simulation can stop with an error.

You can alleviate these motion singularities by selecting the Use robust
singularity handling on the Constraints pane of the Machine Environment
dialog. This option requires extra computation whether or not singularities

5-9

5 Running Mechanical Models

exist. Select it only if you cannot find a Simulink solver that solves your
model in a reasonable amount of time without it.

See “Adjusting Constraint Tolerances” on page 5-25 and “Changing the
Simulink Solver and Tolerances” on page 5-26 for more discussion of motion
singularities and their relationship to the Simulink solvers.

5-10

Controlling the Simulation

Controlling the Simulation
The simulation controls for an entire model are located in the Configuration
Parameters dialog, accessed through the Simulink Simulation menu. See
Simulink documentation for complete details about this dialog. This section,
unless otherwise noted, refers exclusively to this dialog.

You must check and possibly adjust two nodes of this window, Solver and
SimMechanics, before running a mechanical model.

Simulink Configuration Parameters Dialog (SimMechanics Node Shown)

The controls specific to SimMechanics are located on the SimMechanics
node, which has two active areas, Diagnostics and Visualization.

• “Configuring SimMechanics Simulation Diagnostics” on page 5-12

• “Visualizing Your Machines” on page 5-13

The choice and configuration of the solver are Simulink settings, located on
the Solver node. This node has two active areas, Simulation time and
Solver options.

• “Choosing a Simulink Solver” on page 5-13

5-11

5 Running Mechanical Models

Once SimMechanics and Simulink are configured, you can run your model.

• “Starting the Simulation” on page 5-14

Configuring SimMechanics Simulation Diagnostics
SimMechanics can provide certain diagnostics to help you understand and,
if necessary, troubleshoot simulation problems and errors. You can adjust
these diagnostics in the Diagnostics area of the SimMechanics node of
Configuration Parameters.

See “How SimMechanics Works” on page 5-15 and “Troubleshooting
Simulation Errors” on page 5-17 to learn about correcting SimMechanics
simulation errors.

Warning on Redundant Constraints
Selecting the Warn if machine contains redundant constraints check
box causes SimMechanics to warn you if there are more constraints than
necessary in your model. This situation by itself does not cause simulation
errors. But too many constraints might lead, during simulation and in certain
configurations, to conflicting constraints and errors.

The check box is selected by default.

Warning on Unstable Constraints in Initial State
Selecting the Warn if number of initial constraints is unstable check box
causes SimMechanics to warn you if small changes to your model’s initial
state leads to changes in the number of constraints. During simulation and
in certain configurations, this instability could lead to too few or too many
(conflicting) constraints on your system and prevent SimMechanics from
finding a solution for the motion.

The check box is not selected by default.

5-12

Controlling the Simulation

Marking Automatically Cut Joints
Selecting the Mark automatically cut joints check box causes Simulink
to mark the icons of Joint or Constraint/Driver blocks that it cuts during
simulation of the model. See “Cutting Closed Loops” on page 4-36 for an
additional discussion. The check box is not selected by default.

Visualizing Your Machines
Configuring visualization requires three steps. See “Starting SimMechanics
Visualization” on page 6-2 for complete details about SimMechanics
visualization.

• You enter the visualization settings for an entire model in the
Visualization area of the SimMechanics node of the Configuration
Parameters dialog. To open visualization, you must select at least one
of these check boxes.

Model-wide visualization is turned off by default.

• You can choose whether or not to visualize a specific machine in your model
through the Visualization pane of its Machine Environment dialog. A
single window displays all selected machines in a model.

• All other visualization controls are located on the SimMechanics
visualization window itself.

Choosing a Simulink Solver
SimMechanics uses one of the ordinary differential equation (ODE) solvers of
Simulink to solve a system’s equations of motion, typically in tandem with a
constraint solver (see “Implementing Constraints” on page 5-6).

Simulink provides an extensive suite of ODE solvers that represent the most
advanced numerical techniques available for solving differential equations

5-13

5 Running Mechanical Models

in general and equations of motion in particular. The Solver node of the
Configuration Parameters dialog allows you to select any of these solvers
for use by Simulink in solving the model’s dynamics. See the Simulink
documentation for complete details about choosing a Simulink solver.

Setting Simulink Solver Tolerances
By default Simulink automatically determines the absolute tolerance used
by ODE solvers. The resulting tolerance might not be small enough for a
mechanical system, particularly a nonlinear or chaotic system. Try running
a simulation with the relative tolerance set to 1e-3 (the default) and the
absolute tolerance set to 1e-4. Then increase the tolerances if the simulation
takes too long or decrease them if the solution is not sufficiently accurate.

Solver Tolerances and Stiction
If your model contains one or more Joint Stiction Actuator blocks, you must
also take into account the velocity thresholds of these blocks when setting the
absolute tolerance of the ODE solver. If the absolute tolerance of the solver is
greater than a joint’s velocity threshold, the simulation might never detect
the locking or unlocking of a joint. To prevent this from happening, set the
absolute tolerance to be no more than 10% of the size of the smallest stiction
velocity threshold in your model.

Starting the Simulation
Once Simulink and SimMechanics are configured to simulate a mechanical
system, you can run your model.

As the simulation proceeds, you might encounter warnings, errors, and
unexpected or unsatisfactory results. Consult these sections to learn how to
identify errors and improve your simulation.

• “How SimMechanics Works” on page 5-15

• “Troubleshooting Simulation Errors” on page 5-17

• “Improving Performance” on page 5-23

• “Generating Code” on page 5-28

• “Limitations” on page 5-33

5-14

How SimMechanics Works

How SimMechanics Works
You might find this brief overview of how SimMechanics works helpful for
constructing models and understanding errors. Fixing errors is discussed in
“Troubleshooting Simulation Errors” on page 5-17.

There are four major phases of the machine simulation sequence. The first
two occur before SimMechanics actually starts machine motion.

1 “Model Validation” on page 5-15

2 “Machine Initialization” on page 5-15

3 “Force Analysis and Motion Integration” on page 5-16

4 “Stiction Mode Iteration” on page 5-16

The premotion machine configurations (home, initial, and assembled) are
discussed in “Kinematics and the Machine’s State of Motion” on page 3-2 and
in their respective “Glossary” on page Glossary-1 entries.

Model Validation
SimMechanics first checks your data entries from the dialogs and the local
connections among neighboring blocks. It then validates the Body coordinate
systems; the joint, constraint, and driver geometries; and the model topology.
Body positions and orientations defined purely by Body dialog entries
constitute the home configuration.

Machine Initialization
SimMechanics next checks the assembly tolerances of Joints that you
manually assembled.

SimMechanics then cuts each closed loop once. An invisible equivalent
constraint replaces each cut Joint, Constraint, or Driver block. SimMechanics
checks all constraints and drivers for mutual consistency and eliminates
redundant constraints. It also checks whether a small perturbation to the
initial state changes the number of constraints. Such a singularity might
lead, during machine motion, to violation of the constraints.

5-15

5 Running Mechanical Models

Any Joint Initial Condition Actuators now impose initial positions and
velocities, changing body geometries from their dialog box configurations as
necessary and transforming the machines from their home configurations to
their initial configurations. SimMechanics then finds an assembly solution
for disassembled joints and initializes them in position and velocity, defining
the assembled configuration. Assembly tolerances are checked again.

A “sticky” joint primitive, actuated by a Joint Stiction Actuator, can be in one
of three stiction modes: locked, waiting, or unlocked. SimMechanics finds a
mutually consistent set of stiction modes for all sticky joints.

Force Analysis and Motion Integration
In Forward Dynamics or Trimming analysis mode, SimMechanics begins the
solution of machine motion by applying and integrating external forces and
torques, stepping in simulation time. It maintains assembly, constraint, and
solver tolerances and checks constraint and driver consistency. It also detects
whether, within one Joint block, distinct joint primitive axes align and destroy
one or more independent DoFs. Such an event is a joint axis singularity.

In Inverse Dynamics and Kinematics modes, SimMechanics now applies
motion constraints, drivers, and actuators to find the machine motion and
derive forces and torques. It also checks tolerances and consistency and
detects singular alignment of joint primitives.

Stiction Mode Iteration
If stiction is present, SimMechanics checks at each time step whether the
sticky joints transition from one stiction mode to another, then checks for
mutual consistency of locked and unlocked sticky joint primitives across the
whole machine.

5-16

Troubleshooting Simulation Errors

Troubleshooting Simulation Errors
SimMechanics simulations can stop before completion with one or more error
messages. You might find the previous section, “How SimMechanics Works”
on page 5-15, useful for tracing errors. Some common errors also appear in
“Modeling Machines” on page 4-3 and “Checking Model Validity” on page 4-74.
This section discusses generic error types.

Most errors and error-fixing strategies fall into broad categories. These
groupings are reflected in the keywords occurring in the error messages that
SimMechanics displays. These sections summarize these groupings.

• “Data Validation Errors” on page 5-17

• “Ground and Body Geometry Errors” on page 5-17

• “Joint Geometry Errors” on page 5-18

• “Block Connection and Topology Errors” on page 5-19

• “Motion Inconsistency and Singularity Errors” on page 5-19

• “Analysis Mode Errors” on page 5-22

Data Validation Errors
Every numerical entry you make in SimMechanics must be a real numerical
expression or MATLAB equivalent. Spatial vectors are 3-vectors, such as
[3 4 5]. Spatial tensors are 3-by-3 matrices, such as rotation matrices and
the inertia tensor.

Note You can specify a two-dimensional curve in the Point-Curve Constraint
block with 2-vectors.

Ground and Body Geometry Errors
Every machine must have a least one Ground block. Every Body block must
have at least one Body CS, defined at the body’s center of gravity (CG). You
must directly or indirectly define the Body coordinate systems (CSs) of a
machine relative to a Ground or to World. You cannot enter cyclic (circular)

5-17

5 Running Mechanical Models

Body CS definitions. The Body CS definitions must separately satisfy these
criteria in the Position and Orientation tabs of the Body dialog.

For example, defining CS3 relative to CS2, defining CS2 relative to CS1,
then defining CS1 relative to CS3, results in a definition that is both cyclic
and missing any reference to a Ground or World. You could break the cycle by
referencing CS1 to a Ground or to World.

To be rendered in visualization, a Body must be connected to at least one
Joint that is connected to the rest of the machine. You cannot visualize with
equivalent ellipsoids a body whose principal inertial moments do not satisfy
the triangle inequalities. (See “Rendering Body Shapes in SimMechanics”
on page 6-5.)

Joint Geometry Errors
The geometric configuration of joints, constraints, and drivers can conflict
with assembly requirements and restrictions on certain blocks.

Assembly Tolerances Violated
Assembled joints must satisfy assembly tolerances on their connected Body
CSs at all times. Disassembled joints assembled at machine initialization
must also satisfy assembly tolerances during the simulation.

Zero Massless Connector Distance
The initial distance between two Body CS origins connected by a massless
connector must be nonzero. The massless connector holds the distance
between two Body CS origins constant during motion.

Composite Joints: Restrictions Among Primitives
Certain composite Joint blocks place restrictions on their primitive joint axes.
For example, Bearing must have its prismatic axis P1 aligned to its third
revolute axis R3.

5-18

Troubleshooting Simulation Errors

Block Connection and Topology Errors
General rules on how to connect SimMechanics blocks are discussed in
Chapter 4, “Modeling Mechanical Systems”. In particular, consult these
sections of that chapter:

• “Modeling Machines” on page 4-3

• “Checking Model Validity” on page 4-74

Some restrictions are properties of individual blocks, as explained in their
reference pages. See the SimMechanics block reference.

Motion Inconsistency and Singularity Errors
Inconsistencies in motion arise from misapplication of constraints, drivers,
and actuators, from conflicting stiction requirements, and incorrect simulation
dimensionality.

Motion simulation errors often occur because of singularities or dividing by
very small numbers. SimMechanics can integrate certain singularities, at a
cost (see “Choosing a Simulink Solver” on page 5-13).

Zero Masses and Moments of Inertia
A body moving on a prismatic axis must have nonzero mass if you actuate it
with forces. A body rotating about a revolute axis or pivoting about a spherical
must have nonzero inertial moments about the axis or pivot if you actuate it
with torques. If you want a massless rigid body, consider using a Massless
Connector from the Joints/Massless Connectors sublibrary.

Note You can use point bodies (nonzero mass but zero moments) in
SimMechanics, if the connected revolute axes and spherical pivots are
dislocated from the body. Although the moments are zero about a point body’s
CG, the displacement of the body from the axis or pivot shifts the moments
from zero to nonzero values.

5-19

5 Running Mechanical Models

Alignment of Distinct Primitives
Within a single Joint block, two distinct prismatic axes or two distinct revolute
axes should never align during the simulation. If either occurs, a translational
or rotational DoF is lost, and SimMechanics cannot determine the subsequent
motion. An example of primitive axis alignment singularity is “gimbal lock.”
Two of the three revolute primitive axes in the Gimbal block become parallel,
reducing the number of independent DoFs in the Joint from three to two.

No Degrees of Freedom
Your machine cannot move if it has no degrees of freedom. Each Constraint,
Driver, and motion-actuating Actuator block you add to a machine reduces the
number of independent DoFs. (See “Counting Degrees of Freedom” on page
4-77.) Cure such errors by removing one or more of these blocks from your
machine, until you have at least one independent DoF.

Incorrect Machine Dimensionality
You cannot run a three-dimensional machine with a simulation restricted to
two dimensions. See “Choosing Your Machine’s Dimensionality” on page 5-4.

Redundant Constraints
Some constraints can restrict what another constraint is already restricting.
Fix these errors by identifying and removing the redundancies.

Violated Constraints
Some machine motions or simulations might not be able to maintain assembly
tolerances at a particular simulation step while simultaneously satisfying the
constraints. One or more joints become disassembled, followed by an error.

You can correct this situation in several ways. First, identify the joint,
constraint, or driver causing the error and examine its physical configuration
when the error occurs to isolate the conflict. Then try any combination of
these steps:

• Decrease the Simulink solver tolerances.

• Switch to a more robust Simulink solver.

• Decrease the constraint solver tolerances.

5-20

Troubleshooting Simulation Errors

• Switch to the machine precision constraint solver.

• Increase the assembly tolerances.

See “Choosing a Simulink Solver” on page 5-13 and “Implementing
Constraints” on page 5-6.

SimMechanics tries to harmonize your choices of ODE solver and solver
tolerances, constraint solver and tolerances, and assembly tolerances in this
dynamic hierarchy:

Conflicting Actuators
You cannot put more than one actuator on a joint primitive.

5-21

5 Running Mechanical Models

Note You can simultaneously place an initial condition actuator and a
force/torque actuator on a joint primitive.

The Joint Stiction Actuator block does accept an input signal for nonfrictional
forces/torques, which the block adds to the stiction.

Sticky Joints in Conflict
If your machine has two or more stiction-actuated (“sticky”) joints, a conflict
among them can put SimMechanics into an infinite loop and prevent
determination of the machine motion. Or one locked joint can prevent the
other joints, sticky or not, from moving. The machine stops moving.

For example, one sticky joint becomes unlocked and requires the other to lock,
which then requires the first to lock.

Remove these conflicts by removing one or more stiction actuators or by
changing the Joint Stiction Actuator locking thresholds.

Analysis Mode Errors
Certain restrictions apply to the analysis modes presented in “Analyzing the
Motion” on page 5-7. Consult individual analysis modes for more:

• “How SimMechanics Works” on page 5-15

• “Finding Forces from Motions” on page 8-7

• “Trimming Mechanical Models” on page 8-18

• “Linearizing Mechanical Models” on page 8-32

5-22

Improving Performance

Improving Performance
SimMechanics is a general-purpose mechanical simulator. With it, you can
model and simulate many types of machines with very different behaviors. In
some cases, the settings you use for “well-behaved” machines are not optimal
for more-difficult-to-simulate systems. Simulink and SimMechanics give you
great freedom to change the mathematical and mechanical settings used in
your simulations. Use this flexibility to avoid simulation errors and optimize
performance, subject to the fundamental tradeoff between speed and accuracy.

• “Simplifying the Degrees of Freedom” on page 5-23

• “Adjusting Constraint Tolerances” on page 5-25

• “Smoothing Motion Singularities” on page 5-25

• “Changing the Simulink Solver and Tolerances” on page 5-26

• “Adjusting the Time Step in Real-Time Simulation” on page 5-27

Consult “Generating Code” on page 5-28 to learn about speeding up
simulations by generating and compiling code from your models.

Simplifying the Degrees of Freedom
In general, the more degrees of freedom (DoFs) you add to your model, the
slower the simulation.

Eliminating Unnecessary Degrees of Freedom
Under certain circumstances, a model can contain DoFs not practically
necessary to predict system behavior. For example, a subsystem might
contain very light masses whose motion is almost completely determined by
the heavier masses in the system and that have almost no inverse influence
on the larger system.

Consider freezing or eliminating such degrees of freedom from your model
in order to speed up the simulation.

5-23

5 Running Mechanical Models

Freezing “Fast” and “Slow” Degrees of Freedom
A related distinction can be made between DoFs that change rapidly and
those that change slowly. Such systems are "stiff" (literally, in the case of a
stiff spring that oscillates at a very high frequency) and often hard to simulate
accurately in a reasonable time.

One approach to improving the speed is to selectively freeze certain DoFs.

1 First, freeze or eliminate the “fast” DoFs and simulate only the “slow” DoFs.

2 Then freeze the “slow” DoFs in some representative configuration and
simulate the motion of only the “fast” DoFs.

Such a split simulation between “fast” and “slow” DoFs can isolate important
features of the system behavior, while ignoring unimportant features.

Caution Splitting DoFs between “fast” and “slow” sets and simulating the
two sets separately neglects coupling between the two sets of DoFs. Only a
full simulation can capture such coupling.

See “Solving Stiff Systems” on page 5-26 for a different approach to handling
speed mismatches among DoFs.

Removing Stiction Actuators
Stiction requires computationally expensive algebraic loops. If possible,
remove Joint Stiction Actuator blocks from your model to speed it up.

Simulating in Two Dimensions
If your machine moves in only two dimensions, not three, it qualifies for the
SimMechanics two-dimensional simulation option. By reducing the linear and
rotational directions from three to two and three to one, respectively, this
option can noticeably improve simulation performance.

See “Choosing Your Machine’s Dimensionality” on page 5-4.

5-24

Improving Performance

Adjusting Constraint Tolerances
Maintaining constraints on a system’s DoFs is a major and computationally
expensive part of a simulation. If your simulation seems to run slowly or stops
with constraint errors, especially when the mechanism passes through certain
configurations, consider relaxing the constraint tolerances and/or solver.
This step generally speeds up the simulation, although it also makes the
simulation less accurate. Decreasing the tolerances increases the accuracy of
the simulation but can increase the time required to simulate the model.

To view and change these settings in your machine, see “Implementing
Constraints” on page 5-6.

Smoothing Motion Singularities
Singularities in a system’s equations of motion can dramatically slow down
a standard Simulink solver or even prevent it from finding a solution to
a system’s equations of motion. Because mechanical motion can become
singular, SimMechanics provides the option of robust singularity handling,
which works together with your selected solver to solve singular equations of
motions efficiently. This feature allows Simulink in many cases to simulate
models that otherwise cannot run or cannot be solved in a reasonable amount
of time.

To enable robust singularity handling, see “Handling Motion Singularities”
on page 5-9.

Avoiding Singular Initial Configurations
Avoid starting a machine in a singular configuration. Its subsequent motion
violates assembly tolerances, as the simulation incorrectly removes one or
more necessary constraints. A common singular configuration is one where
the machine can move in two or three dimensions, but starts in exactly one or
two dimensions, respectively.

Work around an initial singularity by slightly misaligning the joint axes,
within assembly tolerances, before starting the simulation.

The SimMechanics node of the Configuration Parameters dialog allows
you to enable simulation warnings for possible singular initial configurations.
See “Configuring SimMechanics Simulation Diagnostics” on page 5-12.

5-25

5 Running Mechanical Models

Changing the Simulink Solver and Tolerances
The Dormand-Prince solver (ode45) that Simulink uses by default works
well for many mechanical systems. But if your simulation seems to be slow
and/or inaccurate you should consider changing the solver and/or adjusting
the solver’s relative and absolute tolerances. Chaotic and highly nonlinear
systems especially require experimentation with different solvers and
tolerances to obtain optimal results.

Consult the Simulink documentation for more about choosing Simulink
solvers and tolerances.

Solving Stiff Systems
The default ode45 Simulink solver typically requires too much time to solve
systems that are stiff, that is, have bodies moving at widely differing speeds
or have many discontinuities in their motions. An example of a stiff system is
a pair of coupled oscillators in which one body is much lighter than the other
and hence oscillates much more rapidly. Any of the following Simulink solvers
might require significantly less time than ode45 to solve a stiff system:

• ode15s: Variable-order solver based on a backward differentiation rule.

• ode23t: Trapezoidal rule solver. Use if your system is slightly stiff, to avoid
numerical damping.

• ode23tb: Implicit Runge-Kutta method solver. More efficient than ode15s
if the solution has many discontinuities.

• ode23s: Modified Rosenbrock method solver of order 2. This solver is also
more efficient than ode15s, if the solution has many discontinuities.

Real-Time Simulation and Ignoring Motion Details with
Fixed-Step Solvers
For most mechanical systems, variable time-step solvers are preferable. Fixed
time-step solvers, depending on the size of the time step, often fail to resolve
certain motion details.

Using a fixed-step solver can be advantageous in some cases, however:

5-26

Improving Performance

• If you want to ignore unimportant motion details. Ignoring them can speed
up your simulation, especially for a larger time step.

• If you are simulating in real time with generated code. Fixed-step solvers
are typically, but not exclusively, the norm for real-time simulation.

For such cases, choose one of Simulink’s fixed-step solvers and select the
largest time step that produces reasonable simulation results.

Most of Simulink’s fixed-step solvers are explicit. For stiff systems and larger
time steps, an implicit solver such as the ode14x fixed-step solver can be
superior to an explicit solver in speed and accuracy.

Adjusting the Time Step in Real-Time Simulation
A real-time simulation using code generated and compiled from your model
must keep up with the actual mechanical motion. To this end, you must
ensure that the solver time step is greater than the computation time needed
by your compiled model.

To meet this condition, you might have to increase the time step or decrease
the computation time. Increasing the time step often requires removing the
model’s “fast” DoFs. Decreasing the computation time requires simplifying
your model. You can do this most easily by removing DoFs and/or constraints.
See “Simplifying the Degrees of Freedom” on page 5-23.

Reference

[1] Moler, C. B., Numerical Computing with MATLAB, Philadelphia, Society
for Industrial and Applied Mathematics, 2004, Chapter 7.

5-27

5 Running Mechanical Models

Generating Code
You can use SimMechanics with Real-Time Workshop to generate stand-alone
C or C++ code from your mechanical models and enhance simulation speed
and portability. Certain features of Simulink make use of generated or
external code. This section explains these features.

• “Using Code-Related Products and Features” on page 5-29

• “How SimMechanics Code Generation Differs from Simulink” on page 5-30

• “Using Run-Time Parameters in Generated Code” on page 5-31

Some SimMechanics features are restricted when you translate a model into
code. See “Limitations” on page 5-33.

Note Code generated from SimMechanics models is intended for rapid
prototyping and hardware-in-the-loop applications. It is not intended for use
as production code in embedded controller applications.

Related Simulink Code Generation Documentation
Consult the documentation for Real-Time Workshop, xPC Target, Simulink
Accelerator, and “Writing S-Functions” for general information on installing
and using these products.

Reasons for Generating Code
Code generation has many purposes and methods in Simulink. In
SimMechanics, there are three essential rationales:

• Compiled code versions of Simulink models run faster than the original
block diagram models. The time savings for regular Simulink models can
be dramatic. For the SimMechanics portions of a model, the performance
improvements are not as extreme, yet can still be significant.

• A more important consideration for SimMechanics models is that converting
the SimMechanics part of a model to code frees your model from requiring
SimMechanics to run. For example, converting a SimMechanics subsystem
to an S-function block allows you to run a model with Simulink alone.

5-28

http://www.mathworks.com/products/rtw/
http://www.mathworks.com/products/xpctarget/

Generating Code

• An equally important consideration for SimMechanics is the stand-alone
implementation of generated/compiled code. Once you convert part or all of
your model to code, you can deploy the stand-alone executable program on
virtually any platform, independently of MATLAB.

Converting a model or subsystem to code also hides the original model or
subsystem.

Using Code-Related Products and Features
Simulink, Real-Time Workshop, and xPC Target, using several code-related
technologies, enable you to link existing code to your models and generate
code versions of your models.

Code-Related Task Component or Feature

Link existing code written in C
or other supported languages to
Simulink models

Simulink S-functions to generate
customized blocks

Speed up Simulink simulations Simulink Accelerator

Generate stand-alone fixed-step code
from Simulink models

Real-Time Workshop

Generate stand-alone variable-step
code from Simulink models

Real-Time Workshop
Rapid Simulation Target (RSim)

Convert Simulink models to code
and run them on a target PC

xPC Target

Generate blocks representing a
Simulink models or subsystems

S-function Target

Generate code for designated models
or subsystems

Model Reference

5-29

5 Running Mechanical Models

This diagram summarizes the product and feature flow of generating code
from models and linking existing code to models.

How SimMechanics Code Generation Differs from
Simulink
In general, using the code generated from SimMechanics models is similar
to using code generated from normal Simulink models. There are certain
differences.

SimMechanics and Simulink Code Are Generated Separately
Real-Time Workshop generates code from the SimMechanics blocks separately
from the Simulink blocks in your model. The generated SimMechanics code
does not pass through model.rtw or the Target Language Compiler. All the
code generated from a single model resides in the same directory, however.

SimMechanics Code Reuse Is Not Supported
Reusable subsystems in Simulink reuse code that is generated once from the
subsystem. You cannot generate reusable code from subsystems containing
SimMechanics blocks.

5-30

Generating Code

Using Run-Time Parameters in Generated Code
When SimMechanics generates code for a model, it creates a set of code source
and header files. This set includes modelname.c and modelname_data.c,
containing all the model’s run-time parameters. (For C++, these are .cpp
files.) In addition, SimMechanics generates two files that contain data
structures and function prototypes for the SimMechanics blocks alone.

The modelname.c file contains all the run-time parameters used in the
compiled simulation. modelname_data.c and the two special SimMechanics
files are auxiliaries to aid in locating and changing the run-time data.

Changing Run-Time Parameters
As with code generated from any Simulink model without parameter inlining,
you can change any run-time parameters by modifying their values in the
block parameters data structure implemented in modelname_data.c. In this
data structure, however, SimMechanics block parameters are not associated
with their original blocks. Rather, SimMechanics block parameters are
grouped together into a single vector associated with the first SimMechanics
S-function for each machine in the model.

The data structures and functions found in the special SimMechanics files,
rt_mechanism_data.h and rt_mechanism_data.c, allow you to modify
SimMechanics block parameters in generated code. The special header file
contains a data structure, MachineParameters_modelname_uniqueid, for
each machine in the model, that includes a field for each block run-time
parameter. To modify mechanical run-time parameters,

1 Use the function rt_vector_to_machine_parameters_modelname_uniqueid
in the special code source file to create an instance of the machine
parameters data structure from the vectorized parameters associated with
the SimMechanics S-function.

2 Make the necessary modifications to the values in the data structure
instance.

3 Use rt_machine_parameters_to_vector_modelname_uniqueid to
reconstruct the vectorized parameters from the data structure instance.

4 Recompile your generated code.

5-31

5 Running Mechanical Models

Example: Changing a Block Parameter
This code listing is an example of a simple function that updates the mass of
the first body in the demo mech_dpen. The argument p should be a pointer
to the parameter vector associated with the SimMechanics S-function. The
argument mass is the new mass for the first body. You should call this function
before model initialization.

void update_mech_dpen_parameters(real_T *p, real_T mass)
{

MachineParameters_mech_dpen_752c07b6 ds;
/*
* convert parameter vector into data structure
*/

rt_vector_to_machine_parameters_mech_dpen_752c07b6(p, &ds);
/*
* change the mass of the first body in the double pendulum
*/

ds.Body.Mass = mass;

/*
* convert the data structure back to the parameter vector
*/

rt_machine_parameters_to_vector_mech_dpen_752c07b6(&ds, p);
}

Tunable Parameters Not Supported by SimMechanics Code
Generation
A tunable parameter is a Simulink run-time parameter that you can change
while the simulation is running. SimMechanics blocks do not support tunable
parameters in either simulations or generated code.

SimMechanics Run-Time Parameter Inlining Ignores Global
Exceptions
If you choose to enable parameter inlining for code generated from a
SimMechanics model, SimMechanics inlines all its run-time parameters.
If you choose to make some of the global SimMechanics block parameters
exceptions to inlining, the exceptions are ignored. You can change global
tunable parameters only by regenerating code from the model.

5-32

Limitations

Limitations
Some Simulink features and tools either do not work with models containing
SimMechanics blocks or work only with restrictions. Others work with
SimMechanics models but only on the normal Simulink blocks in those models.

Changing Block Properties at the Command Line
Changing the block properties of SimMechanics blocks at the command line
is not recommended.

Restricted Simulink Tools
Certain Simulink tools are restricted in use with SimMechanics.

• Simulink configurable subsystems work with SimMechanics blocks only if
all of the block choices have consistent port signatures.

• For Iterator, Function-Call, Triggered, and While Iterator nonvirtual
subsystems cannot contain SimMechanics blocks.

• SimMechanics supports external mode, but without visualization.

• SimMechanics supports Simulink model referencing, with these
restrictions:

- A SimMechanics model can be referenced only once by another model.

- SimMechanics does not support reparameterization in a referencing
block.

Unsupported Simulink Tool
The Simulink Profiler does not work with SimMechanics models.

Simulink Tools Not Compatible with SimMechanics
Blocks
Some Simulink tools and features do not work with SimMechanics blocks:

• Execution order tags do not appear on SimMechanics blocks.

• SimMechanics blocks do not invoke user-defined callbacks.

5-33

5 Running Mechanical Models

• You cannot tune SimMechanics block parameters during simulation.

• You cannot set breakpoints on SimMechanics blocks.

• Reusable subsystems cannot contain SimMechanics blocks.

• You cannot use the Simulink Fixed-Point Settings interface with
SimMechanics blocks.

• The Report Generator reports SimMechanics block properties incompletely.

Restrictions on Two-Dimensional Simulation
Certain blocks are not supported in two-dimensional simulation mode. These
include disassembled joints, massless connectors, and joints that can move in
three dimensions. See “Choosing Your Machine’s Dimensionality” on page 5-4.

Restrictions with Generated Code
Code generated from models containing SimMechanics blocks has certain
limitations.

Stiction-Related Algebraic Loops Disabled
Stiction implemented with Joint Stiction Actuator blocks requires algebraic
loops iterated at a single time step to detect discrete events. In generated
code versions of models with stiction (including models run with Simulink
Accelerator), the mode iteration to determine joint locking and unlocking
instead occurs over multiple time steps, possibly reducing simulation accuracy.

Closed-Loop Limitations
Closed-loop models in certain analysis mode configurations use nonlinear
solvers with no upper limit on iterations. Code generated from such models is
valid but, in general, not truly “real time.” These configurations include:

• Forward Dynamics mode when Constraint solver type in the Machine
Environment block is set to Machine Precision or Tolerancing

• Kinematics mode

5-34

Limitations

Restrictions on Code Generated from Two-Dimensional
Machines
If you generate code from a model containing one or more machines simulated
in two dimensions, the generated code is also restricted to two-dimensional
motion. Thus, if you change run-time parameters in the generated code, you
must ensure that the new values do not violate the two-dimensional motion
restriction.

The choice of machine dimensionality is either automatic or manual, but
this restriction on generated code applies in either case. See “Choosing Your
Machine’s Dimensionality” on page 5-4.

Fixed-Point Not Supported by SimMechanics Code Generation
You must run code generated from models containing SimMechanics blocks
on floating-point processors.

5-35

5 Running Mechanical Models

5-36

6

Visualizing and Animating
Machines

You can visualize your machine’s bodies in SimMechanics with a special
window based on MATLAB Graphics. You can also construct your own virtual
world and drive it as an external visualization client with SimMechanics
signals by constructing your own interface.

Starting SimMechanics
Visualization (p. 6-2)

Various ways that SimMechanics
renders and animates component
rigid bodies of machines

Rendering Body Shapes in
SimMechanics (p. 6-5)

Understanding and choosing body
shapes for machine component
visualizations

Introducing the SimMechanics
Visualization Window (p. 6-11)

Overview of visualizing machine
bodies in SimMechanics

Controlling Machine Displays in
SimMechanics (p. 6-18)

Changing how machines are
displayed in the SimMechanics
visualization window

Animating SimMechanics
Simulations (p. 6-24)

Running machine simulations and
recording their animations with
SimMechanics

Custom Visualization with Virtual
Reality (p. 6-28)

Building a custom interface
from SimMechanics to externally
rendered virtual reality machines

6 Visualizing and Animating Machines

Starting SimMechanics Visualization
Starting visualization in SimMechanics requires two choices, one for your
entire model, the second for each machine in your model. These choices are
part of configuring your model for simulation, as discussed in “Controlling
the Simulation” on page 5-11. Implement your visualization choices at any
time by clicking Apply or OK.

• You can choose whether or not to visualize a specific machine in your model
through the Visualization pane of its Machine Environment block dialog.
A single window displays all selected machines in a model. By default, each
machine is selected for visualization.

• You enter the visualization settings for an entire model in the
Visualization area of the SimMechanics node of the Configuration
Parameters dialog. To open visualization, you must select at least one
of these check boxes.

Model-wide visualization is turned off by default.

Rendering Your Machines in Static Display
Select the Display machine after updating diagram check box if you
want the SimMechanics visualization window to display the machines in
your model in a static rendering. Once you select this check box, you can
synchronize the display with changes in your model by selecting Update
Diagram in the Simulink Edit menu. To open the static visualization the
first time, you must update your model after selecting this check box.

This check box is not selected by default.

6-2

Starting SimMechanics Visualization

Animating Your Machines During Simulation
Select the Show animation during simulation check box if you want
the SimMechanics visualization window to animate your machine as it
moves during the simulation. If you select this check box, but not the static
rendering, the visualization opens only when you start the simulation.

This check box is not selected by default.

Other SimMechanics Visualization Controls
All other visualization controls are located on the SimMechanics visualization
window itself. You can access them once the window is open.

Using SimMechanics Visualization
This chapter guides you in making the appropriate visualization choices
within SimMechanics. This section explains why you might want to visualize
your machine’s and animate its motion.

You can find more on the choice of body shapes in the next section:

• “Rendering Body Shapes in SimMechanics” on page 6-5

The three sections that follow explain the SimMechanics visualization
controls:

• “Introducing the SimMechanics Visualization Window” on page 6-11

• “Controlling Machine Displays in SimMechanics” on page 6-18

• “Animating SimMechanics Simulations” on page 6-24

Rendering Versus Animation
SimMechanics visualization serves two distinct purposes, static and dynamic
visualization. In both cases, you can change your observer viewpoint and
navigate through the scene. You can change the body properties of the
visualization only by changing the corresponding Body blocks in your model.
Changing a body’s mass, inertia tensor, and coordinate systems can change
its visual rendering.

6-3

6 Visualizing and Animating Machines

Static Rendering
Static rendering of machines in their initial state, during construction. Either
choice is valid:

• Open the visualization before or while you build your model. You render
each body as you add it to your model.

Having the visualization window open during model building lets you keep
track of your machine parts and how they are connected. You can see
unphysical or mistaken constructions before you finish the model.

• Open the visualization after you finish the model. All the bodies in the
model appear together.

Dynamic Animation
Animation of machines while the SimMechanics model is running. Use this
feature to watch the model’s dynamics in three dimensions and visualize
motions and relationships more easily than is possible with Scope blocks
alone. Chapter 5, “Running Mechanical Models”presents the steps for
configuring and running SimMechanics models.

Creating an External Virtual Reality Client
You can bypass standard SimMechanics visualization by creating a virtual
reality world of your own design to visualize your machine’s bodies. With
Virtual Reality Toolbox, you can build a custom interface from your model to
the virtual world and animate its virtual bodies:

• “Custom Visualization with Virtual Reality” on page 6-28

6-4

Rendering Body Shapes in SimMechanics

Rendering Body Shapes in SimMechanics
The visualization window renders the bodies in either of two shapes:

• Equivalent ellipsoid for each body, based on its mass properties and center
of gravity (CG) position, explained in “Equivalent Ellipsoids” on page 6-5

• Convex hull for each body, based on its Body coordinate systems (CSs),
explained in “Convex Hulls” on page 6-8

Choosing the Body Shape
You choose the body rendering in the special SimMechanics toolbar of the
SimMechanics visualization window. You can render the bodies of your
machine with either convex hulls, or ellipsoids, or both. See “Introducing the
SimMechanics Visualization Window” on page 6-11 for visualization control
details.

Equivalent Ellipsoids
The inertia tensor I of a rigid body is real and symmetric, so it has three real
eigenvalues (I1, I2, I3) and three orthogonal eigenvectors. These eigenvectors
are the principal axes of the body. In the coordinate system defined by those
axes, the inertia tensor is diagonal. The trace of the inertia tensor, Tr(I) =
I1+ I2 + I3, is the same in any coordinate system with its origin at the body’s
center of gravity (CG).

Every rigid body has a unique equivalent ellipsoid, a homogeneous solid
ellipsoid of the same inertia tensor. The ellipsoid surface is given by

x
a

y
a

z
ax y z() ⎛

⎝⎜
⎞
⎠⎟ ()+ + =

2 2 2
1

The three parameters (ax, ay, az) are the generalized radii of the ellipsoid.
For axis i = 1,2,3,

a Tr I mi i= () −⎡⎣ ⎤⎦ ()5 2 2I

6-5

6 Visualizing and Animating Machines

Triangle Inequalities
The principal moments (I1, I2, I3) must satisfy the triangle inequalities:

I I I

I I I

I I I

2 3 1

3 1 2

1 2 3

+ ≥
+ ≥
+ ≥

Violation of the triangle inequality for Ii leads to an unphysical imaginary
generalized radius ai.

Caution Visualizing the equivalent ellipsoid of a body whose principal
moments do not satisfy the triangle inequalities leads to a SimMechanics
warning indicating that one or more triangle inequalities have been violated.
The simulation continues, but the body in violation is not displayed.

Ellipsoids with Special Symmetry
In general, all three Ii, i = 1,2,3, are unequal. Such a body is an asymmetric
top. If two of the three Ii are equal (double degeneracy), the body is a
symmetric top. The third axis is the axis of symmetry. If all three Ii are equal
(triple degeneracy), the body is a spherical top and dynamically equivalent to
a homogeneous sphere.

Reduced-Dimension Ellipsoids
In special cases, the equivalent ellipsoid reduces to a planar, linear, or point
figure.

Let (i,j,k) label the three axes (1,2,3) = (x,y,z) in any order.

• For a true ellipsoid, with nonzero volume, all the ai are nonzero. The
triangle inequalities are strict inequalities in this case:

I I I

I I I

I I I

j k i

k i j

i j k

+ >

+ >

+ >

6-6

Rendering Body Shapes in SimMechanics

• For an ellipse, with zero volume but nonzero area, one ai = 0 and the other
two aj, ak are nonzero. One of the triangle inequalities becomes an equality:

I I I

I I I

I I I

j k i

k i j

i j k

+ =

+ >

+ >

• For a line, with zero volume and area but nonzero length, two ai, aj = 0 and
the third ak is nonzero. Two of the triangle inequalities become equalities:

I I I

I I I

I I I

j k i

k i j

i j k

+ =

+ =

+ >

Equivalently, Ii = Ij are nonzero and Ik = 0.

• For a point, with no spatial size, all three ai vanish. All three triangle
inequalities become equalities:

I I I

I I I

I I I

j k i

k i j

i j k

+ =

+ =

+ =

Equivalently, all three Ii vanish.

Example: Simple Pendulum Rod
Consider the simple pendulum rod in “Visualizing a Simple Pendulum” on
page 2-30. You can open the model by entering mech_spen at the command
line.

The rod length L = 1 m, and its radius r = 1 cm. The inertia tensor is

I
I

I

mr

mL

mL

xx

yy

zz

0 0
0 0
0 0

2 0 0

0 12 0

0 0 12

2

2

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

6-7

6 Visualizing and Animating Machines

Because the rod has an axis of symmetry, the x-axis in this case, two of its
three principal moments are equal: Iyy = Izz, and two of its three generalized
radii are equal: ay = az. The rod is a symmetric top and, since r is much smaller
than L, its equivalent ellipsoid is almost a line of zero volume and area.

The generalized radii of the equivalent ellipsoid are ax = 5 3 2L() = 0.646 m

and ay = az = 5 2r() = 1.12 cm. This is the rod so rendered:

Convex Hulls
Every Body has at least one Body coordinate system (CS) at the CG. A Body
also has one or more extra Body CSs for the attached Joints, as well as
possible Actuators and Sensors. Each Body CS has an origin point, and
the collection of all these points, in general, defines a volume in space. The
minimum outward-bending surface enclosing such a volume is the convex
hull of the Body CSs, and this is the alternative way that SimMechanics
can render a body.

6-8

Rendering Body Shapes in SimMechanics

To enclose a nonzero volume, the set must have at least four non-coplanar
Body CSs. Three non-collinear Body CSs are rendered instead by a triangle,
and two non-coincident origins by a line. One is displayed just as a point.
(The minimum one Body CS would be just the CG CS.) Four or more coplanar
origins are rendered by a triangle, three or more collinear origins are rendered
by a line, and two or more coincident origins are rendered by a point.

Example: Four-Cylinder Engine Crank
Refer to the four-cylinder engine model of the Demos library by entering
mech_fceng at the command line.

Double-click the Engine Block subsystem and note the Crank block
representing the engine crank. This Body block has six Body CSs. Visualize
the engine as convex hulls with the SimMechanics visualization window.
The large block in your visualization is this engine crank, and it encloses a
nonzero volume.

6-9

6 Visualizing and Animating Machines

Four Cylinder Engine Example: Engine Crank Convex Hull (Yellow)

6-10

Introducing the SimMechanics Visualization Window

Introducing the SimMechanics Visualization Window
The MATLAB Graphics-based visualization window is part of SimMechanics.
With it, you can customize how your machines are displayed, interact with
your model, and watch and record animations.

The SimMechanics visualization window features special controls. It also uses
a special set of symbols to draw bodies and Body coordinate systems (CSs).
This section is an overview of what you can do with the SimMechanics window:

• “Interpreting the Special SimMechanics Symbols” on page 6-12

• “Using the Standard MATLAB Graphics Controls” on page 6-13

• “Accessing the Special SimMechanics Features” on page 6-14

• “Saving and Recalling Display Settings” on page 6-16

Note This section mainly focuses on features specific to SimMechanics
MATLAB Graphics visualization. Certain standard MATLAB Graphics
features are disabled or missing in the SimMechanics visualization window.

Refer to the MATLAB Graphics documentation for a full discussion of the
graphics tools of MATLAB.

Opening and Updating the SimMechanics
Visualization Window
Starting visualization and choosing the display options for the machines in
your model are discussed in “Starting SimMechanics Visualization” on page
6-2.

Once you configure and start SimMechanics visualization, a customized
MATLAB Graphics figure window opens and displays the machines in your
model that you have chosen to visualize. One window displays all selected
machines simultaneously.

6-11

6 Visualizing and Animating Machines

To synchronize the static visualization rendering of your machines with your
model, select Update Diagram from the model Edit menu at any time.

SimMechanics Visualization Window Displaying a Machine

Interpreting the Special SimMechanics Symbols
When SimMechanics opens a visualization window, it uses special conventions
to render the bodies of your machine. You can control some of these
conventions through the SimMechanics menu (see “Changing Machine
Display Symbols” on page 6-19).

The machine bodies are rendered by one of the two SimMechanics body shapes
(see “Rendering Body Shapes in SimMechanics” on page 6-5):

• The window displays all the machine’s bodies. If a body has one of these
associated surfaces, the surface is shaded red:

6-12

Introducing the SimMechanics Visualization Window

- Equivalent ellipsoid

- Convex hull of one or more surface patches (a triangle of coplanar points
or an enclosing surface of four or more points)

A line convex hull is a red stick figure.

• Surfaces used in marking out enclosed convex hull volumes or planar
triangles are tiled with patches.

The rendering uses two special symbols:

• The center of gravity (CG) point of each body is marked by a circle-plus

symbol .

• Each Body CS is marked by coordinate axis triads. The color coding is
X-Y-Z axes = RGB = red-green-blue.

Using the Standard MATLAB Graphics Controls
The main controls of the Figure Toolbar are standard on all MATLAB
Graphics windows. Refer to the MATLAB Graphics documentation to learn
how to configure graphics windows and objects.

For SimMechanics visualizations, the Zoom in, Zoom out, and Rotate 3D
buttons are especially useful. Select the button and click in the display area
to activate the feature. Click, hold, and roll the figure to rotate the machine
in three dimensions.

The useful Camera Toolbar, also discussed in the MATLAB Graphics
documentation, is enabled by default in SimMechanics. You can enable or
disable it, as well as the Figure Toolbar, from the View menu. “Changing
Perspective and Window Size” on page 6-22 discusses its role in SimMechanics
visualization.

6-13

6 Visualizing and Animating Machines

Accessing the Special SimMechanics Features
You can perform a variety of tasks with the special SimMechanics menu,
submenus, and toolbar.

Once you open a visualization window in SimMechanics, you have two ways to
control the machine display and carry out these tasks:

• Use the SimMechanics menu in the middle of the menu bar. The
menu contains special items and submenus. See “The SimMechanics
Visualization Menu” on page 6-15.

6-14

Introducing the SimMechanics Visualization Window

• Use the buttons in the SimMechanics toolbar. Every feature on this toolbar
occurs in the SimMechanics menu, although the reverse is not true. See
“The SimMechanics Visualization Toolbar” on page 6-16.

Certain options in the SimMechanics menu toggle between enabled and
disabled; for example, Enable Model Highlighting. By selecting the item,
you either enable it, and a check mark appears, or you disable it, and the
check mark disappears.

Other menu items, when you select them, instead trigger an immediate
action, for example, Simulation > Start.

The SimMechanics Visualization Menu
These are the top-level items in the SimMechanics menu.

Menu Item or Group Feature

Machine Display Control machine rendering

Viewpoint Control perspective, axes, and window size

Simulation Control model simulation

Animation Record simulation animation

Enable Model
Highlighting

Highlight Body blocks

Display Settings Save, load, and restore SimMechanics display
settings

Open Visualization
Help

Open Help browser to this section of
SimMechanics documentation

6-15

6 Visualizing and Animating Machines

The SimMechanics Visualization Toolbar
You can activate many SimMechanics features by selecting buttons on
the SimMechanics toolbar, instead of selecting items in the SimMechanics
menu. The setting changes initiated by the toolbar are the same as the
corresponding menu actions: either you enable or disable a feature, or you
initiate an immediate action.

Hovering your mouse cursor over a toolbar button displays the button’s tooltip
indicating its function.

SimMechanics Toolbar Features

Saving and Recalling Display Settings
As you work with the SimMechanics menu, you might want to save the
setting changes that you make. The main menu has three items that allow
you to save, load, and reset display settings.

Saving Display Settings
Save Display Settings saves the current configuration of SimMechanics
visualization settings. The settings are stored in a MAT-file. By default, this

6-16

Introducing the SimMechanics Visualization Window

MAT-file is placed in your current MATLAB directory. (To see your current
directory, check the Current Directory browser or Current Directory field
on the MATLAB desktop, or enter pwd at the command line.) If the name of
your model is modelname.mdl, the default settings file is modelname.mat.
When you save the settings, the Save Display Settings browser allows you
to change the directory and name of the file. You can save multiple display
settings MAT-files under different names. Using an existing MAT-file name
overwrites the existing MAT-file.

The name of the last saved MAT-file is stored in the Simulink MDL-file itself.
You must save your MDL-file in order to save this name.

If you do not choose to store your settings before you close SimMechanics
visualization, your settings are not saved, and the MDL-file does not store a
name for a MAT-file.

Reopening a Model Visualization
If the MDL-file lacks a name of a display settings MAT-file to load,
SimMechanics visualization reverts to the default settings upon restarting.

If you do save a MAT-file of display settings, SimMechanics automatically
loads the last saved MAT-file of display settings when you restart
SimMechanics visualization after closing your visualization window or the
entire MDL-file.

Reloading Display Settings Manually
If you want to load a different settings MAT-file, select Load Display
Settings and choose a file in the Load Display Settings browser.

Resetting Display Settings to Default
If at any time you want to revert to the default display settings documented
in this section, select Restore Default Settings.

6-17

6 Visualizing and Animating Machines

Controlling Machine Displays in SimMechanics
You can change how machines look in the SimMechanics visualization
window. This section explains how to control the machine display:

• “Highlighting Bodies and Body Blocks” on page 6-18

• “Changing Machine Display Symbols” on page 6-19

• “Changing Perspective and Window Size” on page 6-22

Highlighting Bodies and Body Blocks
Clicking a body or body coordinate system (CS) in the SimMechanics
visualization window causes the following:

• The rendered body surface or CS triad changes color to yellow.

• The visualization window displays the associated Body block or Body CS
name and its path on the line just above the machine display.

• The model window comes back to focus with the associated Body block
highlighted in red.

To unhighlight, click anywhere in the white area of the machine display. You
cannot highlight a body while the simulation is running.

You can enable or disable the highlighting of model Body blocks from the
SimMechanics menu item Enable Model Highlighting. The default is
enabled. Whether model highlighting is enabled or disabled, clicking a body
in the visualization window always highlights the body in yellow. If you
disable model highlighting, the associated Body block is not highlighted when
you click the rendered body.

6-18

Controlling Machine Displays in SimMechanics

The mech_four_bar model from the Demos library is shown with Bar2 (the
middle bar) highlighted.

SimMechanics Visualization Window with Highlighted Body and Body Block

Changing Machine Display Symbols
The visualization window uses various symbols to render the machine. (See
“Accessing the Special SimMechanics Features” on page 6-14.) You can enable
or disable these symbols from the Machine Display submenu. Some options
depend on which body rendering you choose, equivalent ellipsoids or convex
hulls (see “Rendering Body Shapes in SimMechanics” on page 6-5).

Changing Machine Display Symbols
The Machine Display submenu has two groups of active items. You can
disable or reenable any one or more of these by selecting the items. When an
item is disabled, the corresponding symbols immediately disappear from the

6-19

6 Visualizing and Animating Machines

machine display in the window. When an item is reenabled, the corresponding
symbols immediately reappear.

The first group allows you choose whether to display machine bodies as convex
hulls, equivalent ellipsoids, or both. By default, the convex hull rendering is
enabled, while the equivalent ellipsoids are disabled.

Convex Hulls Display convex hull for each body

Equivalent Ellipsoids Display equivalent ellipsoid for each
body

The second group allows you to turn body-related symbols on or off. Display of
all three is enabled by default.

Body Surfaces Display convex hull or ellipsoid
surfaces

Centers of Gravity (CGs) Display center of gravity symbols

Coordinate Systems (CSs) Display coordinate system triads

You can try displaying your machine with different combinations of symbols
turned on or off. The Stewart platform of the mech_stewart_trajectory
demo illustrates the possibilities.

• If body surfaces are turned off, convex hulls are rendered by red open wire
frame figures. If the body surfaces are turned on, convex hull surfaces are
rendered with red solid patches filling in the wire frame.

6-20

Controlling Machine Displays in SimMechanics

Convex Hulls Without and With Body Surfaces (Stewart Platform)

• If body surfaces are turned off, ellipsoids are rendered by red open wire
frame figures. If the body surfaces are turned on, the ellipsoid wire frame
is filled in by red surface patches.

Equivalent Ellipsoids Without and With Body Surfaces (Stewart Platform)

• If both convex hulls and ellipsoids are turned on, the machine display is a
superposition of the two renderings.

6-21

6 Visualizing and Animating Machines

• If you turn off both body shapes, bodies are outlined by their centers of
gravity (CGs) and body coordinate systems (CSs).

Bodies Outlined by CGs and Body CSs (Stewart Platform)

Changing Perspective and Window Size
You can change your perspective view of the machine and the size of the
visualization window with the Viewpoint submenu. Selecting a viewpoint
immediately changes your view in the window.

Setting a Perspective Automatically
The available automatic perspectives are X-Y Plane, Y-Z Plane, X-Z Plane,
and the trimetric 3-D (view([1 -1 1])). The coordinate axes in SimMechanics
are

+x (rightward)

+y (upward)

+z (out of the screen)

A planar view projects the machine onto the selected plane. The trimetric
view displays the machine from the viewpoint along the axis (1, -1, 1).

6-22

Controlling Machine Displays in SimMechanics

Setting a Perspective Manually
You can find any perspective you want manually with the features of the
Figure Toolbar and the Camera Toolbar.

To manually rotate the view,

1 Activate Rotate 3D from the Figure Toolbar or the Tools menu.

2 Click and hold your mouse anywhere in the display area, then roll the
mouse to roll the viewpoint. Release your mouse to stop the roll.

To disable the 3-D roll, deactivate the menu item or button.

You can change the visualization window perspective in a more comprehensive
way with the camera controls. Find these controls in the Tools menu or on
the Camera Toolbar. With these controls, you can change the viewpoint
angle, display projection, and scene lighting. You can also navigate through
the machine display.

Note The Figure Toolbar and Camera Toolbar features are standard
MATLAB features fully described in the MATLAB Graphics documentation.

Changing the Window and Axis Size
Fit Machine to View immediately resizes the visualization window and the
machine to fit together. It does not change the display perspective.

Enable Automatic Axis Resize forces SimMechanics to resize the axes
and window to fit the full range of machine motion during an animation. If
this option is disabled, the axes instead shift to follow the machine motion.
The default is disabled.

6-23

6 Visualizing and Animating Machines

Animating SimMechanics Simulations
This section shows you how, from the SimMechanics visualization window,
you can control certain aspects of machine simulation and animation. The
SimMechanics controls also allow you to record machine animations.

• “Controlling the Simulation from the Window” on page 6-24

• “Changing the Machine Display Refresh Rate” on page 6-24

• “Speeding Up the Animation” on page 6-25

• “Recording and Playing Animations” on page 6-26

Controlling the Simulation from the Window
Certain Simulink model features are mapped into the SimMechanics menu
so you can use them from the SimMechanics visualization window. You find
these features in the Simulation submenu.

You can start a model (if it is not running) and stop a model (if it is running)
from this submenu by selecting Start or Stop. The keyboard shortcut Crtl+T
initiates the same actions, if the SimMechanics visualization window or the
Simulink model window is in focus.

You can update your Simulink model diagram by selecting Update Diagram
or by entering Ctrl+D at the keyboard with the visualization window or
Simulink model window in focus.

You can also enable or disable the display of the simulation running time by
selecting Display Simulation Time in this submenu. The default is disabled.
The simulation running time is shown in the left corner of the status bar at
the bottom of the SimMechanics window as Simulation Time: ... sec.

Changing the Machine Display Refresh Rate
By default, the machine display is updated at every major time step during
simulation. You can change this refresh rate by reconfiguring the Simulink
output options. Taking more sample points makes the animation smoother.
Using fewer sample points leads to a more disjointed animation, but a faster
simulation and a smaller recorded animation file (see “Recording and Playing
Animations” on page 6-26).

6-24

Animating SimMechanics Simulations

Open Configuration Parameters in the Simulation menu of your model
window. On the Data Import/Export node, in the Save options area,
change the Output options pull-down menu entry to Produce specified
output only. You must now use the Output times field on the right to
specify explicitly how often Simulink should capture the simulation output. In
this field, enter a vector of sample times. The sample time range must be the
same as or lie within the Start time and Stop time range of the Simulation
time area in the Solver node of Configuration Parameters.

If you want a uniform output sampling, use the linspace command to specify
the time range and number of sample points:

linspace(start-time, end-time, number-of-points)

See the Simulink documentation on the Configuration Parameters dialog
for more about output options.

Example: Changing the Refresh Sampling Rate
To sample 200 points from zero to 10 seconds,

1 Open Configuration Parameters from the Simulation menu.

2 Locate Output options in the Data Import/Export node. Change the
pull-down menu to Produce specified output only.

3 Enter linspace(0,10,200) in the Output times field. Click Apply or OK.

Speeding Up the Animation
As SimMechanics animates your machine’s motion, it moves the bodies,
whether rendered as convex hulls or as equivalent ellipsoids, and refreshes
the body center of gravity (CG) and coordinate system (CS) triad symbols.

You can speed up the animation if you turn off one or more of these symbols:

• Body CGs

• Body CSs

• Ellipsoids or Convex Hulls

• Body Surfaces

6-25

6 Visualizing and Animating Machines

The preceding section, “Changing Machine Display Symbols” on page 6-19,
explains the full set of display controls and how to enable and disable them.
Leave at least one type of symbol enabled in order to see the bodies’ motions.

Recording and Playing Animations
The SimMechanics visualization window allows you to record animations
of your machine simulations. The animations are stored in Audio Video
Interleave (AVI) format. You control animation recording through the
Animation submenu.

To activate animation recording, enable Store in AVI File. The default is
disabled. By default, recorded AVI files are placed in your current MATLAB
directory. (To see your current directory, check the Current Directory
browser or Current Directory field on the MATLAB desktop, or enter
pwd at the command line.) If the name of your Simulink model file is
modelname.mdl, the name of the recorded AVI file is modelname.avi. When
you enable animation recording, this name appears in the right corner of the
status bar at the bottom of the visualization window as Animation File:
modelname.avi.

SimMechanics first records a MATLAB movie by capturing the machine
display at every major simulation or output time step. Then, in the
termination phase of your simulation, it converts this movie to AVI format
and stores it in the AVI file. A small AVI Conversion window opens to
indicate that conversion and storage are complete and to display the path of
the AVI file. Click OK to close this prompt.

Caution SimMechanics overwrites any existing file with the same name as
the AVI file in the same directory. The AVI file write fails if a file of the same
name that is locked by another application exists in the same directory.

Changing the Name and Storage Directory of the Animation
File
If you want to change the directory in which your AVI files are stored, you
must implement the change before beginning the simulation. Change the AVI
storage directory by selecting Choose AVI File Location. The AVI File

6-26

Animating SimMechanics Simulations

Location browser appears. Change to the directory you want the AVI file
stored in, then click Save.

In the same AVI File Location browser, you can also change the name of the
stored AVI file before clicking Save.

Compressing the Animation File
You can reduce the size of your AVI file by compressing it. Select Compress
AVI File to enable this feature. The default is enabled.

Caution AVI compression is available only on the Windows platform.
MATLAB uses the Indeo 5 compression algorithm. You must have the
corresponding video codec installed to

• Compress an animation while recording.

• Decompress and play back a compressed animation.

Check your operating system configuration for installed video codecs.

Playing Back the Animation File
You need an AVI-compatible video player to view the recorded file. You can
use the internal MATLAB movie viewer or an external video player.

If you open an AVI file from MATLAB, an Import Wizard prompts you to
load the AVI stream. Click the Play Movie button. The MATLAB Movie
Viewer opens and runs the animation.

6-27

6 Visualizing and Animating Machines

Custom Visualization with Virtual Reality
You can bypass the standard SimMechanics visualization and create a
machine animation in a virtual world of your own design. This gives you the
power to animate a more realistic visualization of your machine. You create
a virtual world, populate it with bodies represented as virtual objects using
Virtual Reality Modeling Language (VRML), then interface the virtual world
with your SimMechanics model. Creating your own virtual animation requires
a new or existing virtual world for your model and an interface between them.

This section explains how to use a separately created virtual world with
SimMechanics:

• “Creating Virtual Worlds for SimMechanics Models” on page 6-28

• “Interfacing SimMechanics with Virtual Worlds” on page 6-32

Virtual Reality Visualization This section assumes that Virtual Reality
Toolbox is installed on your system and that you are familiar with it and with
creating virtual worlds. Refer to the Virtual Reality Toolbox documentation
for full details on installing and using this toolbox.

We recommend you allocate generous central processor power, graphics card
speed, and memory for the virtual reality feature, especially for animation.

Creating Virtual Worlds for SimMechanics Models
The Virtual Reality Toolbox User’s Guide and VRML books such as Marrin
and Campbell [8] explain how to create virtual objects and assemble them
into virtual worlds. The best way to become comfortable moving around in a
virtual world is to practice with a variety of movement modes and viewpoints.
This section highlights the special requirements to make a virtual world
usable as a visualization for a SimMechanics model.

Editing Virtual Worlds and VRML Files
As you create a virtual world populated by virtual bodies, you must create
each component body, then plan and implement the geometry of the machine’s
initial state. Use a VRML authoring tool that can read VRML as a native

6-28

http://www.mathworks.com/products/virtualreality/
http://www.mathworks.com/access/helpdesk/help/toolbox/vr/

Custom Visualization with Virtual Reality

format to create and edit virtual reality .wrl files. Virtual Reality Toolbox
includes a VRML authoring tool called V-Realm Builder®. If you are familiar
with raw VRML source code, you can use a plain text editor or the MATLAB
editor to edit the files.

Representing Bodies as Virtual Objects
You represent each body by a virtual object encoded in a .wrl file. You also
create a master .wrl file to represent the virtual world that refers to body
.wrl files, placing and orienting these bodies in the larger scene. You can
define a body’s position and orientation with respect to,

• The overall virtual world, corresponding to the SimMechanics coordinate
system World

• Another body in the machine, corresponding to Body coordinate systems
in SimMechanics

You can nest body references to other bodies in VRML hierarchies, but you
must define at least one body’s position and orientation with respect to the
overall virtual world. Place and orient the bodies in their initial states,
corresponding with the initial state of the SimMechanics simulation.

Each body’s .wrl file contains a hierarchical tree starting with the Transform
node. Among Transform’s fields must be translation and rotation fields to
specify the body’s position and orientation in space. If a body is nested below
another body, its position and orientation are defined with respect to the
next body up the hierarchy.

Creating your own virtual world gives you great flexibility in representing
your machine:

• You can render bodies in as much or as little detail as you want, with
shapes, colors, textures, etc., of your own choosing.

• You can include or omit bodies that you do not animate.

• You can create a computer-aided design (CAD) assembly of your machine
and export it into VRML files.

• If you only translate a body, you can omit the rotation field from its
Transform node.

6-29

6 Visualizing and Animating Machines

• If you only rotate a body, you can omit the translation field from its
Transform node.

Example: Viewing Custom External VRML Files for the
Conveyor Loader
The demo model mech_conveyor_vr is a modified version of the original
conveyor model mech_conveyor and comes with external VRML files
containing static renderings of the machine parts in their initial positions.
This example uses the V-Realm Builder editor to view the files.

1 In the matlabroot\toolbox\physmod\mech\mechdemos\ directory, open
these external VRML files with V-Realm Builder:

base.wrl, convmech.wrl, link1.wrl, link2.wrl, link3.wrl,
link4.wrl, pusher.wrl

2 With the conveyor.wrl world in focus, click the Test Mode button in
the V-Realm Builder toolbar and view the complete machine in the Main
view. Right-click in this window to configure the navigation. If the colors
seem washed out, toggle off the headlight.

6-30

Custom Visualization with Virtual Reality

These conveyor parts are more realistic than the equivalent ellipsoids or
convex hulls available in SimMechanics visualization:

3 On the left side of your VRML editor window, examine the node tree
of convmech.wrl that refers to the six VRML files representing each
component body:

The hierarchy of body position and orientation references is flat in this
model. Each body is separately referenced to the top level of the hierarchy,
New World.

6-31

6 Visualizing and Animating Machines

4 Expand one of the nodes. Each body node has, among others, rotation and
translation fields:

The exception is the base. Being grounded and immobile, it has neither
a translation nor a rotation field.

Interfacing SimMechanics with Virtual Worlds
To animate a body, you need to measure its motion in your SimMechanics
simulation and export that information to the virtual world. This requires
connecting Body Sensor blocks to the Bodies you want to animate in your
model, then creating an interface that animates the virtual bodies with
the body sensor motion signals. “Example: Interfacing the Conveyor
Loader Model and Virtual World” on page 6-35 applies these steps to the
mech_conveyor_vr demo.

Adding and Configuring Body Sensors
Refer to “Sensing Body Motions” on page 4-63 for general information on how
to use Body Sensors. Connect the Body Sensors to Body coordinate systems
(CSs) on the bodies whose motions you want to animate. The Body block
reference discusses how to create and configure Body CSs. You need to take
these extra steps to export the signals of a body sensor to your virtual world:

1 Make sure the Body Sensor’s Body CS reference origin and orientation
follow the body’s defining VRML hierarchy.

6-32

Custom Visualization with Virtual Reality

Example: You define a new Body CS on a body to connect the Body Sensor.
If you defined the VRML body’s position with respect to the center of
gravity (CG) of a second, neighboring body in your VRML files, you should
set the Translated from origin of field of the new Body CS to the origin
of the CG CS of the second body.

2 In the Body Sensor dialog, select the [x; y; z] Position check box if you
want to animate the body’s translational motion.

Select the [3 x 3] Rotation matrix check box if you want to animate the
body’s rotational motion.

3 Choose the coordinate system in which the body motions are measured in
the With respect to coordinate system pull-down menu. You can pick
Absolute (World) or Local (Body CS). This coordinate system should
be the same as the coordinate system used to define the body’s position
and orientation in the VRML files.

A Simulink output port > appears on the block for each of the motion signals.
The translational signal is a 3-vector of spatial coordinates, (x, y, z). The
rotational signal is a 9-vector, column-wise representation of the 3-by-3
orthogonal rotation matrix R, (R11, R21, R31, R12, ...).

Animating the Virtual World Bodies
Animating the virtual bodies requires interfacing the body sensor signals in
the SimMechanics model with the VRML translation and/or rotation fields in
the .wrl files. You accomplish this with the VR Sink block, which you can find
in the Virtual Reality Toolbox block library. Enter

vrlib

at the command line. Drag a copy of the VR Sink block into your model.

Open the VR Sink dialog box. (The figure Conveyor Loader Model: VR Sink
Dialog Box on page 6-37 displays an example of the dialog.) In the Source
file field in the World properties area, enter the name of the VRML file that
represents your model’s virtual world. This is the file that refers to the other
.wrl files representing the component bodies of your machine. If the virtual
world VRML file is not in the same directory as your model, enter the file’s
path relative to the model. Click Apply.

6-33

http://www.mathworks.com/access/helpdesk/help/toolbox/vr/vrsink.shtml

6 Visualizing and Animating Machines

In the VRML tree window, the node list of the virtual world .wrl file appears.
Expand the tree of each component body in the list to view that body’s check
box list. Select the rotation and/or translation check boxes as needed for
each body. A Simulink input port > appears on the block icon for each of these
selected check boxes. The ports are labeled node.field. The node is the name
for the body. The field is named either rotation or translation.

Converting Body Sensor Signals into VRML Format
You are now ready to connect the Body Sensor output signals to the VR Sink
block. But you might need to modify those signals for valid use in VRML.

• You can connect the translational motion signal line directly from the
output port of the Body Sensor to the node.translation input port on the
VR Sink. The VRML node tree directly accepts translation motion as a
3-vector signal of rectangular coordinates (x,y,z).

Make sure that the translational motion signal refers to the same
coordinate system used to define the body’s position in the VRML files.

• You cannot directly connect the rotational motion signal line to the VR
Sink. The Body Sensor output represents orientation with a 3-by-3 rotation
matrix R, while VRML accepts orientation represented as the axis-angle
4-vector form [n θ], where n = (nx, ny, nz) is a 3-vector representing the
rotation axis and θ is the rotation angle.

Open the SimMechanics Utilities library. For each rotational motion signal,
drag a RotationMatrix2VR block into your model. Connect the rotation
signal from the Body Sensor block to the RotationMatrix2VR block. Then
connect the latter block to the corresponding node.rotation input port
on VR Sink for that body. This block converts the 3-by-3 R matrix signal
into the 4-vector VRML form.

Close the VR Sink block dialog. Your SimMechanics model now animates
the virtual world.

6-34

Custom Visualization with Virtual Reality

Example: Interfacing the Conveyor Loader Model and Virtual
World
In the mech_conveyor_vr demo model, open the Body Sensor1 block. The
block measures the translational and rotational motion of Link3 in the
conveyor:

The Body Sensor1 block has two Simulink output signals.

The other Body Sensor blocks are similar, except for Body Sensor2, which
measures only the translational motion of the pusher. All the Body Sensors
measure body motions with respect to World, the frame in which the conveyor
base is at rest. Each motion signal represents the body’s displacement relative
to its initial position.

6-35

6 Visualizing and Animating Machines

The mech_conveyor_vr model contains a Virtual Reality Toolbox interface
to the model’s custom VRML files.

Conveyor Loader Model with Custom Virtual Reality Interface

1 Trace each body sensor signal through the model. The signals are routed
through pairs of Simulink Goto and From blocks.

6-36

Custom Visualization with Virtual Reality

2 Open the VR Sink block. The Source file is convmech.wrl, the master file
for this virtual world. The VRML tree on the right reproduces the node
tree visible in the VRML editor for convmech.wrl.

Conveyor Loader Model: VR Sink Dialog Box

3 Expand and scroll down the VRML trees. The trees for Link1, Link2,
Link3, Link4, and Pusher list the field inputs for accepting motion signals.

• The Link component bodies require both translational and rotational
motions. All the Links have actively selected check boxes for their
rotation and translation field inputs.

• The Pusher body requires only translational motion. Only the
translation field check box is selected for the Pusher.

6-37

6 Visualizing and Animating Machines

Each of the nine Simulink input ports on the VR Sink block is named
node.field. The Base of the conveyor does not move, so its node has no
motion input fields.

4 In the VR Sink dialog, click View in the World properties / Source file
area.

Your Virtual Reality Toolbox viewer opens, displaying the conveyor
machine scene. The scene is identical to that visible in the VRML editor
(see “Example: Viewing Custom External VRML Files for the Conveyor
Loader” on page 6-30).

5 Close all the dialog boxes by clicking OK, leaving the viewer open.

6 Click the Start button in the model window.

As in the original mech_conveyor demo, starting the model opens the
Reference Position slider bar that you can move from side to side. As you
do so, watch the pusher in the viewer move in parallel.

6-38

7

Modeling with
Computer-Aided Design

Using SimMechanics with computer-aided design (CAD) extends your
mechanical modeling and simulation capabilities, allowing you to create
SimMechanics models from CAD assemblies.

Introducing CAD Translation (p. 7-3) Overview of installing and using the
CAD-to-SimMechanics translator.

Exporting CAD Assemblies into
Physical Modeling XML (p. 7-6)

Translating computer-aided design
assemblies into the Physical
Modeling XML format with the
CAD-to-SimMechanics translator.

Creating Models from Physical
Modeling XML (p. 7-14)

Generating Body-Joint
SimMechanics models from the
Physical Modeling XML format and
manually editing them

Overview of CAD Translation
Examples (p. 7-22)

Preview of the
CAD-to-SimMechanics translator
examples, from the simplest to most
complex

Exporting a CAD Part (p. 7-23) Modeling and translating a part into
a body

Designing and Exporting CAD
Constraints (p. 7-26)

Modeling and translating parts with
degrees of freedom into bodies and
joints

7 Modeling with Computer-Aided Design

Creating a CAD-Based Robot Arm
Model (p. 7-39)

Generating and completing a full
SimMechanics model from an
exported robot arm assembly

Modeling a Stewart Platform in CAD
(p. 7-46)

Constructing and translating a
six-degree-of-freedom Stewart
platform assembly

7-2

Introducing CAD Translation

Introducing CAD Translation
Computer-aided design (CAD) tools allow you to model machines geometrically
as collections of parts, or assemblies. Simulink and SimMechanics use
a block diagram approach to model control systems around mechanical
devices and simulate their dynamics. The block diagram approach does
not include full geometric information, nor do CAD assemblies typically
incorporate controllers or allow you to perform dynamic simulations. With
CAD translation, you can combine the power of CAD and SimMechanics.

The translator transforms geometric CAD assemblies into Simulink block
diagram models. The intermediary between a CAD assembly and its
SimMechanics model is an XML file in a Physical Modeling format. This
section covers what you need to get started with CAD translation:

• “CAD Translation Software Requirements” on page 7-3

• “Overview of the CAD Translation Steps” on page 7-3

• “Installing the CAD-to-SimMechanics Translator” on page 7-5

CAD Translation Software Requirements
Before starting to use CAD with SimMechanics, you must first

1 Install your CAD platform or CAD software application.

2 Install the CAD-to-SimMechanics translator appropriate to your
CAD platform, using the translator installer. See “Installing the
CAD-to-SimMechanics Translator” on page 7-5.

Overview of the CAD Translation Steps
Using the CAD-to-SimMechanics translator with a CAD assembly requires
two major steps, exporting the CAD assembly into XML and importing the
XML to create a SimMechanics model.

Exporting an Assembly
You export the assembly from the CAD platform into a Physical Modeling
XML file that you can later use with SimMechanics. This step requires the
CAD platform and the platform-specific CAD-to-SimMechanics translator,

7-3

7 Modeling with Computer-Aided Design

but not MATLAB. See “Exporting CAD Assemblies into Physical Modeling
XML” on page 7-6.

Exporting a CAD Assembly into a Physical Modeling XML File

Importing a Model
You then convert the Physical Modeling XML file into a SimMechanics model
in Simulink. This step requires the XML file and SimMechanics, but not the
CAD platform or the translator. See “Creating Models from Physical Modeling
XML” on page 7-14.

Importing a Physical Modeling XML File into SimMechanics

7-4

Introducing CAD Translation

Installing the CAD-to-SimMechanics Translator
You do not need any MATLAB components to install the CAD-to-SimMechanics
translator, but the target CAD platform must be installed.

Downloading the Translator
To obtain the translator, locate and download the self-extracting installer
specific to your CAD platform and operating system from the SimMechanics
product Web page, www.mathworks.com/products/simmechanics/.

Installing the Translator
Once you have obtained the translator download, run the installer and follow
the instructions in the README file provided. Print this file for future
reference.

Installing the Translator over a Network
You can install the translator with the installer, your CAD platform, or both,
on your network. Use the correct paths to specify the locations. If you can,
map these network locations as drives on your computer.

Linking the Translator to Your CAD Platform
To configure your CAD platform to work with the translator, you need to link
the translator to the CAD platform so that it is enabled and available as
you work with an assembly.

Consult the translator’s README instructions file and your CAD platform’s
documentation for further information about linking.

Finding the Translator Help and Example Files
Once your translator is installed, the target installation directory includes
subdirectories containing help files for your CAD platform and example files
containing preconstructed assemblies to learn with.

7-5

http://www.mathworks.com/products/simmechanics/

7 Modeling with Computer-Aided Design

Exporting CAD Assemblies into Physical Modeling XML
The CAD-to-SimMechanics translator converts an existing computer-aided
design (CAD) assembly into a Physical Modeling XML file that is portable
and independent of SimMechanics. From this XML file, you can generate
a SimMechanics model, as discussed in “Creating Models from Physical
Modeling XML” on page 7-14.

Note You do not need MATLAB or any MATLAB component to use the
CAD-to-SimMechanics translator, but you do need to have the target CAD
platform installed.

When you export from your CAD platform, you must export a complete
assembly into XML, not just a part.

This section explains how to export CAD assemblies into the Physical
Modeling XML format.

• “Building a CAD Assembly for SimMechanics” on page 7-6 explains the
requirements for a CAD assembly to produce a valid SimMechanics model.

• “Translating CAD Assemblies into XML” on page 7-10 walks you through
the steps to export the XML file representing the CAD assembly.

• “Troubleshooting Assembly Export Problems” on page 7-12 examines some
of the problems you might encounter when you export a CAD assembly into
a Physical Modeling XML representation.

• “Getting Help in the Translator Window” on page 7-12 shows you how to
get online help while you are working with the translator.

Building a CAD Assembly for SimMechanics
The CAD-to-SimMechanics translator creates a Physical Modeling XML file
that represents the assembly’s parts as bodies and maps the constraints
between the parts into joints. You need to specify enough information in your
CAD assembly for SimMechanics to construct a dynamically meaningful
model from the XML file.

7-6

Exporting CAD Assemblies into Physical Modeling XML

CAD Assembly Component Corresponding SimMechanics Blocks

Part Body

Constraints * Joints

Fundamental Root Ground – Root Weld – Root Body

Subassembly Subsystem

Subassembly Root: [[trunk]] –
constraint(s) – subassembly

[[Root Body – Root Weld – Fixed Body]]
– Joint – subsystem

Fixed Part (in a subassembly) Root Body – Weld – Body

* Constraints on parts in a CAD assembly are sometimes called mates.

Roots and Root Bodies
Every CAD assembly has a single fundamental root, a fixed point that
does not move. The positions and orientations of all parts refer directly or
indirectly to this fundamental root. The translator converts the fundamental
root into a unique Ground – Weld – Body combination in SimMechanics.

A root body is a zero-mass, zero-inertia body used in the generated
SimMechanics model to represent a CAD root. A root body is always welded
to ground, so that its zero mass and zero inertia do not affect the model’s
dynamics. A root body is necessary, in general, to represent a fixed anchor
for part constraints in the original assembly. This body can carry multiple
coordinate systems for this purpose, while the single Ground block in the
generated model can carry only one.

Subassemblies and Hierarchies
You can isolate a collection of CAD components (parts and their constraints)
into a subassembly. The translator converts subassemblies into subsystems
in SimMechanics.

The main assembly is like the trunk of a tree, and its subassemblies are like
the branches of the tree. Subassemblies can have subassemblies, and so on.
This tree is the assembly’s hierarchy. Each CAD subassembly has its own
subassembly root. A fixed part of a CAD subassembly is a part that is welded
to the subassembly root. It cannot move relative to the subassembly root.

7-7

7 Modeling with Computer-Aided Design

See “Creating a CAD-Based Robot Arm Model” on page 7-39 for an example of
subassembly hierarchy.

Improving Your Assembly with Subassemblies
Use subassemblies to organize your assembly hierarchically. This will
simplify your subsequent SimMechanics model by grouping blocks into
corresponding subsystems. Follow these guidelines to ensure that your CAD
assembly translates into a functioning SimMechanics model:

• You must have at least one fixed part inside each subassembly. (See
“Subassemblies and Hierarchies” on page 7-7 for more on fixed parts.)

• Put as many welded components as you can inside rigid subassemblies or
combine welded components into a single equivalent part.

If your assembly has a group of parts that do not move relative to one
another, model them so that the translator treats this group as a single
part, eliminating unnecessary Body and Joint blocks from your subsequent
SimMechanics model.

• Avoid imposing constraints between a subassembly part and geometrical
abstractions such as the x-y, y-z, and x-z planes of the subassembly. Instead,
impose constraints between the part and a fixed part in the subassembly.
Normally, this fixed part is the subassembly root and translates to the
Fixed Body in the Root Body – Root Weld – Fixed Body sequence.

Mass Properties of Assembly Parts
The CAD assembly’s parts need to have masses and inertia tensors. When
you generate the SimMechanics model, this mass property information is
used to specify the properties of the SimMechanics Body block corresponding
to each assembly part.

Your CAD platform might compute masses and inertia values from the mass
density and geometry of the assembly parts. Otherwise, you must specify
the mass and inertia tensor with respect to the part’s center of gravity. The
translator computes the center of gravity of each part automatically.

See “Exporting a CAD Part” on page 7-23 for an example.

7-8

Exporting CAD Assemblies into Physical Modeling XML

Constraint Geometries
The constraints in your CAD assembly restrict how the assembly’s parts can
move with respect to each other. Without any constraints, a pair of CAD
parts can move with six unrestricted degrees of freedom (DoFs) relative
to one another. Constraints between pairs of parts reduce the six to fewer
DoFs. In SimMechanics, joints express DoFs between bodies because bodies
by themselves carry no DoFs. Constraints and joints are complements of
one another.

You must specify the constraint geometry in the CAD assembly consistently
and in enough detail for SimMechanics to reconstruct the assembly’s DoFs
as joints. The relationship between constraints in CAD and joints in
SimMechanics is not, in general, a simple mapping. Some SimMechanics
joints have only one DoF, while others represent more than one DoF.
The translator often combines multiple DoFs into one joint. Constraint
specification details often depend on the specific CAD platform.

Each joint is connected to each of two bodies at a body coordinate system
(CS). The constraint geometry determines the joints into which the translator
transforms the constraints and controls the position and orientation of the
body CSs. Each of these body CSs has an origin and axis triad fixed relative
to its body. The translator creates body CSs on the bodies as necessary for
connecting joints.

See “Creating a CAD-Based Robot Arm Model” on page 7-39 for an example of
configuring constraints.

Avoiding Redundant Constraints
Keep constraints simple and few enough to avoid creating unnecessary joints
in your SimMechanics model.

For example, consider three parts, P1, P2, and P3, in an assembly. Suppose P1
and P2 are constrained so that there is no movement possible between them.
When you attach P3, you could put one constraint between P3 and P1 and the
other between P3 and P2. This leads to a redundant joint in the SimMechanics
model, making it harder to understand and troubleshoot than if you created
only one constraint. In this example, it is better to create a constraint just
between P3 and P2, since P2 cannot move with respect to P1 anyway.

7-9

7 Modeling with Computer-Aided Design

Translating CAD Assemblies into XML
To translate the CAD assembly into a form that SimMechanics can use, you
must check and configure the translator settings, then save the assembly
through the translator into the Physical Modeling XML format.

Applying the Translator Settings
Open your CAD assembly.

1 Open the SimMechanics settings interface for your CAD platform.

In this interface, you set the tolerance configurations. See “Configuring
Tolerances” on page 7-10.

2 At any time, you can

• Apply your settings.

• Cancel your settings. You lose whatever new settings you have entered.

Configuring Tolerances
In the Settings area, you can configure one or more of the translation
tolerances. Geometrical and numerical differences smaller than the tolerances
are treated as zero. The entries implicitly have the same units selected in
your CAD platform settings.

• Linear tolerance specifies the smallest significant difference in length.

• Angular tolerance specifies the smallest significant difference in angle.

• Relative roundoff specifies the smallest significant numerical difference.

Creating the XML File
To complete translation of the assembly into a Physical Modeling XML file,

1 Apply your translator settings.

2 If you changed the assembly or any subassemblies, you need to rebuild the
assembly and resave it in its native format before exporting it to XML.

7-10

Exporting CAD Assemblies into Physical Modeling XML

3 Export the assembly into XML format. The default name is the same as
that of the CAD assembly file. You can change the XML filename and
directory at this point.

4 Click OK.

The assembly is saved in the new form as an XML file.

Note To use the exported XML file to automatically generate a
SimMechanics model, you need to move or copy the file into a MATLAB
working directory. See “Creating Models from Physical Modeling XML”
on page 7-14.

7-11

7 Modeling with Computer-Aided Design

Troubleshooting Assembly Export Problems
The CAD-to-SimMechanics translator can encounter difficulties when it
attempts to represent your assembly in the XML file as SimMechanics bodies
and joints.

Constraint Translation Errors
Constraint translation errors occur when you specify a constraint in your CAD
assembly that is not supported for export. Constraints (or mates) supported
for a specific CAD platform are listed in its help page (see “Getting Help in
the Translator Window” on page 7-12).

If the translator fails to map one or more constraints into joints, it issues one
or more error dialogs and logs the errors into a text file. The error dialog
indicates the name of this error log file, which is located in the same directory
as the exported Physical Modeling XML file. The XML file is generated
regardless of constraint translation errors.

The XML file itself contains the same errors, each paired with the
corresponding failed joint. The constraints that failed to translate properly are
converted instead into welds. These errors reappear as MATLAB command
line warnings if you generate a SimMechanics model from the XML file.

Subassembly Configuration Errors
Be sure that you configure your subassemblies’ positions and orientations to
be consistent with the main assembly’s configuration before you export the
assembly.

If subassemblies are not consistent with their main assembly, the resulting
model will not be valid and will encounter simulation errors.

Getting Help in the Translator Window
The translator installation for your platform includes online help files that
are independent of the MATLAB Help system.

7-12

Exporting CAD Assemblies into Physical Modeling XML

Getting HTML Help
To obtain online translator help in your CAD platform, select the help option
available in the SimMechanics interface for your CAD platform.

Your default Web browser opens and displays an HTML help file specific
to your CAD platform.

Getting PDF Help
You can also access a translator guide in PDF format by looking in your CAD
platform’s CAD-to-SimMechanics translator installation directory. The PDF
guide contains the CAD-related sections of this user’s guide.

7-13

7 Modeling with Computer-Aided Design

Creating Models from Physical Modeling XML
A CAD assembly can contain enough part and constraint information that
you can generate a SimMechanics model consisting of Body and Joint blocks
representing the assembly. Once you have exported a CAD assembly into a
Physical Modeling XML file, you can generate a SimMechanics block diagram
model with this file. Although the generated model will run, you often need
to manually simplify and complete it to faithfully represent the original
dynamic system.

• “Generating Body-Joint CAD-Based Models” on page 7-14 shows
how to import the XML file into SimMechanics using the command
import_physmod, which constructs the model.

• “Common Features of CAD-Based Models” on page 7-16 explores the
characteristics of an automatically generated CAD-based model.

• “Editing and Completing Generated Models” on page 7-16 explains when
and how to edit your model and expand it with additional blocks, such as
Constraints, Drivers, Actuators, and Sensors.

• “Troubleshooting CAD-Based Models” on page 7-19 points out major
model-generation and simulation errors and problems that can arise from
CAD-based models, and techniques for solving them.

Note This section assumes that you have SimMechanics installed locally
or remotely, and that you have the XML file representing a CAD assembly
in your current MATLAB directory.

To generate the SimMechanics model, you do not need the CAD platform from
which the XML file was exported or the CAD-to-SimMechanics translator.

Generating Body-Joint CAD-Based Models
You generate the CAD-based SimMechanics model with the import_physmod
command.

1 Move or copy the Physical Modeling XML file you want to use into your
MATLAB working directory.

7-14

Creating Models from Physical Modeling XML

2 To start the model generation from an XML file called cad_assembly.xml,
enter

import_physmod('cad_assembly.xml')

at the command line. A progress bar appears and is updated as the model
is imported.

A Simulink model window opens. The model is populated by Bodies
and Joints corresponding to the assembly parts and constraints saved in
cad_assembly.xml. (The corresponding connections and hierarchy are
explained in “Exporting CAD Assemblies into Physical Modeling XML”
on page 7-6.) The name of the generated model is the name of the original
assembly file, regardless of the name chosen for the XML file.

Changing the Appearance of a Generated Model
You can change the appearance of your generated model by using optional
import settings. See the import_physmod command reference for more details.

For example, entering

import_physmod('cad_assembly.xml','FontSize',18)

at the command line generates a model with a block label font size of 18 pixels.

Using the Physical Modeling XML File Import Dialog
You can also select a Physical Modeling XML file and generate a model from
it through the Physical Modeling XML File Import dialog. Open it by
entering import_physmod at the command line with no arguments.

See the import_physmod command reference for complete information about
the XML file import dialog.

7-15

7 Modeling with Computer-Aided Design

Common Features of CAD-Based Models
Most of the properties of models that you generate from an XML file are the
same as the default properties of all Simulink models. See the Simulink
documentation for general information on working with Simulink models.

Models generated from a CAD-based XML file have certain common features:

• Exactly one Ground block and connected Machine Environment block

• Fundamental root, represented by Ground – Root Weld – Root Body

• Subassembly roots, represented by Root Body – Root Weld – Fixed Body

• Joints with degrees of freedom (DoFs) containing the correct joint primitives
for the translational and rotational DoFs between any two bodies

• Joints without DoFs, represented by Welds

Joints and Subsystem Hierarchy
Joints that directly connect a subsystem’s Body to the next higher level in the
hierarchy appear in that next higher level, not within the subsystem. This
means that the boundary between subassembly and main assembly in CAD is
drawn differently from the boundary between subsystem and top-level system
in SimMechanics. This difference does not change the degrees of freedom of
the model. They are the same in a CAD assembly and in the SimMechanics
model generated from the assembly.

Editing and Completing Generated Models
The import_physmod command generates a model containing only Machine
Environment, a Ground, Bodies, and Joints. A complete SimMechanics model
typically contains other blocks, including Constraints, Drivers, Sensors, and
Actuators (from the mechlib block library), as well as blocks from Simulink,
such as Scopes. Creating a complete SimMechanics model requires inserting
and connecting these additional blocks in your generated model. Use the
relevant sections of Chapter 4, “Modeling Mechanical Systems” to learn how
to use these blocks.

7-16

Creating Models from Physical Modeling XML

Note When you first generate a model from Physical Modeling XML, you
might want to save this original CAD-based model before you create later
versions by eliminating unnecessary blocks and adding new ones.

Deleting Unnecessary Blocks
The constraint-to-joint mapping creates whatever blocks are needed to
correctly isolate the degrees of freedom (DoFs). In some models, certain
generated blocks are not needed for simulation. You can delete these
unnecessary blocks to simplify your model without affecting its dynamics, as
long as you reconnect the remaining blocks properly.

In particular, you can simplify the fundamental root, Ground – Root Weld –
Root Body, in certain cases. (The same holds for subassembly roots. However,
the corresponding subsystem’s Root Body takes the place of Ground, and the
subsystem’s Fixed Body plays the role of Root Body.)

• If the Root Body is connected to the rest of the block diagram by a single
Joint, you can delete the Root Weld – Root Body blocks and reconnect the
Joint directly to Ground.

• If the Root Body is connected to the rest of the block diagram by multiple
Joints, you cannot delete the Root Weld – Root Body sequence because a
Ground can connect to only one Joint, and the generated model contains
only one Ground. You have two alternatives in this case.

- Determine where the Root Body coordinate systems (CSs) are. Delete
the Root Weld – Root Body sequence. Then manually add more Grounds
at the spatial points representing each of the deleted Root Body CS
origins. Reconnect each Joint to its corresponding Ground at the correct
spatial point.

- Leave the Root Weld – Root Body sequence as it is.

See “Building a CAD Assembly for SimMechanics” on page 7-6.

7-17

7 Modeling with Computer-Aided Design

Caution Not all Welds are redundant. Some are needed to connect a Body
that would otherwise be isolated from the rest of the machine. Such Welds
represent rigid connections between distinct assembly parts.

If you want to reduce or eliminate such Welds, return to your original
assembly and reexport it with rigid subassemblies. See “Improving Your
Assembly with Subassemblies” on page 7-8.

Constraining and Driving Degrees of Freedom
Constraints reduce the number of independent degrees of freedom in a
machine by preventing certain movements. Drivers affect DoFs, not by
eliminating them completely, but by forcing their motions to follow an external
time-dependent signal. A constrained or driven DoF is not free to respond
to forces and torques independently.

These sections discuss how to add constraints and drivers to your model:

• “Modeling Constraints and Drivers” on page 4-38

• “Actuating a Driver” on page 4-57

Note You insert these constraints into the SimMechanics model as blocks,
and they act in addition to the part constraints in the original CAD assembly.

Actuating Bodies and Joints with Motions and Forces
SimMechanics gives you the ability to actuate bodies and joints in your models
with external forces and motions, and to set up internal forces between bodies.
You can also vary the mass or inertia (or both) of a body in time. Consult
these sections for more details:

• “Actuating a Body” on page 4-46

• “Varying a Body’s Mass and Inertia Tensor” on page 4-49

• “Actuating a Joint” on page 4-52

7-18

Creating Models from Physical Modeling XML

• “Modeling Force Elements” on page 4-69

Setting the Model’s Initial Conditions
When you import a CAD assembly into SimMechanics, the XML file
determines the initial geometric configuration of the model’s bodies. By
default, the initial velocities of the bodies are zero.

If you want to change the initial positions and/or velocities of the bodies in
your model to be different from the CAD-determined configuration, you need
to add initial condition actuators, as discussed in “Specifying Initial Positions
and Velocities” on page 4-57.

Sensing Forces and Motions
To detect the motions of bodies and joints and measure the forces acting on or
through them, you can add sensors to your model. See “Modeling Sensors”
on page 4-63.

Satisfying General SimMechanics Requirements
You can find the general instructions for building valid SimMechanics models
in these sections.

• “Modeling Machines” on page 4-3

• “Checking Model Validity” on page 4-74

Troubleshooting CAD-Based Models
Problems might arise in your generated SimMechanics model if your CAD
assembly was not constructed or exported properly.

General Guidelines

• See “Building a CAD Assembly for SimMechanics” on page 7-6 instructions
on constructing a CAD assembly specifically for SimMechanics.

• See “Translating CAD Assemblies into XML” on page 7-10 for details about
exporting a CAD assembly.

7-19

7 Modeling with Computer-Aided Design

Troubleshooting Errors During Model Generation
Errors in the Physical Modeling XML file appear as warnings at the MATLAB
command line during model generation.

These warnings arise from CAD constraint translation errors encountered
when the XML file was originally exported. Such errors occur when the
translator fails to map one or more CAD constraints, which restrict the
degrees of freedom between parts, into their corresponding SimMechanics
joints. The translator warns you at the export step if such errors occur.

The failed Joint appears in your generated model as a Weld. You can fix such
an error in two ways:

• In the generated model, manually replace the Weld with the proper Joints.

• Return to the original CAD assembly, reconfigure the constraints, and
export it again.

Consult “Constraint Translation Errors” on page 7-12 for more about export
errors.

Troubleshooting Model Dynamics Errors
Certain problems with CAD-based models appear only when you run the
model.

• You must “fix” at least one part in every CAD subassembly by mating it to
the subassembly root. Otherwise, the massless root body is dynamically
active and experiences infinite acceleration when forces or torques are
applied to it. See these sections for more details:

- “Roots and Root Bodies” on page 7-7

- “Subassemblies and Hierarchies” on page 7-7

- “Improving Your Assembly with Subassemblies” on page 7-8

• If you find constraints are violated while SimMechanics is running your
model, try the following:

- Examine your original CAD assembly for redundant constraints.

7-20

Creating Models from Physical Modeling XML

- Check and possibly increase the assembly tolerances at the original
CAD export step.

- Check and possibly increase the translated model’s assembly tolerances
in the machine’s Machine Environment block, in the Parameters pane.

- On the Constraints panel in the Machine Environment dialog, select
the Use robust singularity handling check box.

• Never decrease assembly tolerances in a CAD-based SimMechanics model.
Instead, decrease the assembly tolerances at the original CAD export step.

Troubleshooting SimMechanics and Simulink Problems
You might also encounter general Simulink or SimMechanics problems while
running your model.

• For problems specific to SimMechanics, see “Troubleshooting Simulation
Errors” on page 5-17.

• For general Simulink problems, consult the Simulink documentation.

7-21

7 Modeling with Computer-Aided Design

Overview of CAD Translation Examples

Note The following CAD assembly and translation examples are based on
SolidWorks® and the SolidWorks-to-SimMechanics translator.

These examples can be recreated with other CAD platforms. The assembly,
geometric, kinematic, and part details differ from platform to platform. In
SolidWorks, constraints on CAD parts are called mates.

The following sections of this chapter illustrate the stages of converting CAD
assemblies into SimMechanics models in Simulink. Each section presents an
example or set of examples based on a specific machine type represented in
CAD and demonstrates how to apply in specific situations the procedures
outlined in the chapter’s preceding sections. The SimMechanics models in
each section are generated with default settings.

• “Exporting a CAD Part” on page 7-23 presents the simplest case, translating
an assembly with a single part or body.

• “Designing and Exporting CAD Constraints” on page 7-26 examines in
detail how you translate assemblies with constrained parts into bodies with
degrees of freedom represented by SimMechanics Bodies and Joints.

• “Creating a CAD-Based Robot Arm Model” on page 7-39 illustrates the
translation of an assembly representing a simple machine, including
subassembly-subsystem hierarchy. This section also introduces
post-translation additions to the model.

• “Modeling a Stewart Platform in CAD” on page 7-46 illustrates the
translation of a moderately complex machine assembly with many degrees
of freedom, subassembly-subsystem hierarchy, and visualization of its
motion.

7-22

Exporting a CAD Part

Exporting a CAD Part
In this example, you export an assembly with one part and no constraints.
Locate the two example CAD files:

• The full assembly file, cup_assembly.ASSEMBLYFILETYPE

• The part, a cup, in a file called cup.PARTFILETYPE

Although it has only one part, you must export the full assembly into XML,
not just the cup part.

Viewing the CAD Assembly
Open the cup assembly file in your CAD platform and check its geometry
and mass properties.

Cup Assembly in a CAD Platform

7-23

7 Modeling with Computer-Aided Design

Property Value

Volume 0.0001 cubic meters (m3)

Surface area 0.0381 square meters (m2)

Density 3.0 grams/cm3 = 3000 kg/m3

Mass 0.2906 kilograms (kg)

Principal moments of inertia at
the center of gravity

Ix = 0.00015, Iy = 0.00067,
Iz = 0.00067 kg-m2

The inertia tensor is computed with the origin at the center of gravity and
the coordinate axes aligned with base-origin axes, indicated in the figure Cup
Assembly in a CAD Platform on page 7-23. The x-axis is the cup’s axis of
symmetry, and the y- and z-axes point across the cup.

Exporting the CAD Assembly
Now export the assembly into Physical Modeling XML format. The XML file
cup_assembly.xml appears in your working CAD directory.

See “Exporting CAD Assemblies into Physical Modeling XML” on page 7-6 for
a discussion of converting CAD assemblies into XML format.

Generating the SimMechanics Model
See “Creating Models from Physical Modeling XML” on page 7-14 for complete
instructions on how to generate models from XML files.

1 Move or copy the exported XML file into a MATLAB working directory to
generate a SimMechanics model from the file.

7-24

Exporting a CAD Part

2 Generate the model from cup_assembly.xml with the import_physmod
command.

Once you generate the SimMechanics model, it has six blocks, a combination

Machine Environment – Ground – Weld – Root Body – Weld – Cup

inside a subsystem, called cup_assembly, representing the entire assembly.

• The Root Body is the nondynamical zero-mass/zero-inertia body inserted
between ground and the cup.

• The second joint is a Weld because the original CAD assembly has no
degrees of freedom.

Deleting the Root Body and one of the Welds does not physically change the
model, as long as you reconnect the remaining blocks.

7-25

7 Modeling with Computer-Aided Design

Designing and Exporting CAD Constraints
In “Exporting a CAD Part” on page 7-23, you create and export an assembly
composed of a single part. The CAD-to-SimMechanics translator converts
the part into a body, with a mass, an inertia tensor, and body coordinate
systems (CSs). Because there are no other parts in that CAD assembly,
the SimMechanics body is welded to ground and has no degrees of freedom
(DoFs). This lack of DoFs is not realistic for most assemblies.

Restricting Degrees of Freedom with Constraints
CAD platforms normally assume that two parts with no constraints between
them have the complete six relative DoFs possessed by any rigid body relative
to another body. You restrict the DoFs between parts by connecting them with
constraints in the CAD assembly. Constraints restrict relative body motion
and reduce the number of relative DoFs between body pairs. There is always
one assembly part welded to ground.

Part-Constraint Assembly Examples in This Section
This section presents a set of complete CAD assemblies with both parts and
constraints. Each example assembly consists of two instances of the same
part file, representing two identical cubes.

• “Common Steps for Generating the Two-Part Models” on page 7-27 presents
the essential steps for generating these models.

• “Block Structure of the Two-Part Models” on page 7-28 discusses the
common structure of all the generated models in this section.

In different assemblies, the two cubes are constrained with different
constraint combinations to create different relative DoFs between the cubes.
You can typically represent a set of DoFs with a large number of different
constraint combinations. Each constraint combination here, in general, is not
the unique way to create the corresponding set of DoFs.

• “Modeling a Six-DoF Joint” on page 7-29 assembles the two cubes with no
constraints so that the cubes have the full six degrees of freedom relative
to one another.

7-26

Designing and Exporting CAD Constraints

• “Modeling a Prismatic Joint” on page 7-30 shows how to constrain the two
cubes in two different ways so as to produce the same result, a single
prismatic (translational) DoF between them.

• “Modeling a Revolute Joint” on page 7-34 constrains the two cubes so as to
allow only a single revolute (rotational) DoF between them.

• “Modeling an Inplane Joint” on page 7-35 constrains the two cubes so as to
allow two prismatic (translational) DoFs between them.

• “Modeling a Spherical-Spherical Massless Connector” on page 7-36
constrains the cubes so as to allow relative spherical joint motion, with the
two cubes separated by a constant nonzero distance.

Locating the Example Assembly Files
Locate the CAD assembly files used as examples for this section. The
assemblies have the generic name <assembly-name>.ASSEMBLYFILETYPE. The
cube part is contained in magic_cube.PARTFILETYPE.

Assembly Name Assembly Configuration

sixDOF Two cubes with no constraints

prismatic1 Two cubes with planar and cylindrical
constraints

prismatic2 Two cubes with planar constraints

revolute Two cubes with planar and cylindrical
constraints

inplane Two cubes with planar constraints

spherical_spherical_
massless_connector

Two cubes with a distance constraint

Common Steps for Generating the Two-Part Models
The steps for exporting a two-part assembly and generating SimMechanics
models based on it are essentially the same for all the examples of this section.

Viewing and Exporting an Assembly
To see a two-part assembly and export it into Physical Modeling XML,

7-27

7 Modeling with Computer-Aided Design

1 Open the assembly <assembly-name>.ASSEMBLYFILETYPE. The two parts
are magic_cube-1 and magic_cube-2.

In the CAD hierarchy, note any constraints imposed on the parts. These
constraints define the relative DoFs between the parts.

2 Now translate this CAD assembly into Physical Modeling XML format. The
XML file is saved in your current working CAD directory.

See “Exporting CAD Assemblies into Physical Modeling XML” on page 7-6
for a discussion of converting CAD assemblies into XML format.

Generating a Model
Now you can generate a model based on this assembly.

1 Move or copy the XML file to a working MATLAB directory. Then open
MATLAB in that directory.

2 At the command line, enter import_physmod('<assembly_name>').
SimMechanics automatically generates a model, <assembly_name>.mdl,
based on <assembly_name>.xml.

The entire assembly is translated into a subsystem, also called
<assembly_name>, within the model.

3 Open the subsystem. The blocks are arranged in the common structure
described in “Block Structure of the Two-Part Models” on page 7-28. A set
of Joints represents the DoFs between the two cubes.

Block Structure of the Two-Part Models
All the models that you generate in this section from the example CAD
assemblies have a common structure because each assembly has a
fundamental root and two moving parts. Each model has eight blocks.

• The assembly’s fundamental root. As in any generated CAD-based model,
the four-block combination Machine Environment – RootGround –
RootWeld – RootPart represents the assembly’s fundamental root. The
RootPart is a nonmoving, zero-mass/zero-inertia body.

7-28

Designing and Exporting CAD Constraints

For more about roots, see “Building a CAD Assembly for SimMechanics” on
page 7-6 and “Common Features of CAD-Based Models” on page 7-16.

• The moving bodies. The bodies representing the assembly’s parts are
magic_cube-1 and magic_cube-2.

• The joints. In all the models, the first cube is connected by a Weld to
RootPart and cannot move. The second cube is connected to RootPart by a
Joint that represents the appropriate degrees of freedom (DoFs).

Depending on the DoFs in question in a particular assembly, the translator
configures the Joint to represent different DoFs with combinations of
prismatic, revolute, and spherical primitives. The second cube can move
with respect to the first through the DoFs represented by the Joint.

Some of the blocks in the generated models are redundant. You can manually
edit and simplify the models without changing their physical properties. For
more about manual editing of generated models, see “Editing and Completing
Generated Models” on page 7-16.

Modeling a Six-DoF Joint
The simplest assembly with two parts has no constraints between the parts.
The parts can move with respect to one another with all six degrees of
freedom (DoFs).

Exporting the Assembly
To see and export such an assembly,

1 Open the assembly sixDOF.ASSEMBLYFILETYPE.

Note, in the CAD hierarchy, that the constraints (Mates) node has no
entries. Therefore, relative to one another, the cubes are unconstrained in
their motion and have six relative DoFs.

2 Translate this CAD assembly into sixDOF.xml.

Generating the Model
Now generate a model based on this assembly.

7-29

7 Modeling with Computer-Aided Design

1 At the MATLAB command line, enter import_physmod('sixDOF').
SimMechanics automatically generates a model, sixDOF.mdl.

2 Open the subsystem sixDOF. There are eight blocks.

The Six-DoF Joint represents the six DoFs between the two cubes with one
spherical and three prismatic primitives.

Modeling a Prismatic Joint
In the following two assemblies, the two cubes are constrained to have
only a single translational degree of freedom (DoF) between them. These
assemblies illustrate two ways to accomplish this; you can experiment with

7-30

Designing and Exporting CAD Constraints

other constraints to find more. In the translated SimMechanics models, this
single DoF is a prismatic joint.

Prismatic as a Planar Constraint and a Cylindrical Constraint
To see the first way of constraining the DoFs to produce a prismatic joint,

1 Open the assembly file prismatic1.ASSEMBLYFILETYPE and examine the
CAD hierarchy.

2 Locate and expand the constraints (Mates) node. There are two constraints
on the two cubes.

• Highlight the first constraint, Concentric1. The constraint geometry is
highlighted in the assembly. This constraint allows the two cubes only to
slide along and rotate about the z-axis running through the center of the
parallel and concentric upper holes of each cube.

• Highlight the second constraint, Coincident2. The constraint geometry is
highlighted in the assembly. This constraint allows the two cubes to slide
along the y-z plane, with the two sides marked “SimMechanics” sharing
a common plane, representing two translational DoFs. It also allows the
two cubes to rotate about the x-axis. The cubes are not allowed to rotate
about any other axis, or to translate perpendicular to the y-z plane.

7-31

7 Modeling with Computer-Aided Design

These two constraints mean that the two cubes can only slide along the
z-axis common to the two upper concentric holes. The second constraint
prevents rotation about this axis, leaving the whole assembly with only one
translational DoF.

Planar and Cylindrical Constraints on Two Cubes

Prismatic as Two Orthogonal Planar Constraints
To see the second way of constraining the DoFs to produce a prismatic joint,

1 Open the assembly file prismatic2.ASSEMBLYFILETYPE and examine the
CAD hierarchy.

2 Locate and expand the constraints (Mates) node. There are two constraints
on the two cubes.

• Highlight the first constraint, Coincident2. The constraint geometry is
highlighted in the assembly. This constraint allows the two cubes to slide
along the y-z plane, with the two sides marked “SimMechanics” sharing
a common plane, representing two translational DoFs. It also allows the

7-32

Designing and Exporting CAD Constraints

two cubes to rotate about the x-axis. The cubes are not allowed to rotate
about any other axis, or to translate perpendicular to the y-z plane.

• Highlight the second constraint, Coincident3. The constraint geometry is
highlighted in the assembly. This constraint allows the two cubes to slide
along the x-z plane, with the two sides marked “The MathWorks” sharing
a common plane, representing two translational DoFs. It also allows the
two cubes to rotate about the y-axis. The cubes are not allowed to rotate
about any other axis, or to translate perpendicular to the x-z plane.

These two constraints mean that the two cubes can only slide along the z-axis
common to the two planes y-z and x-z, leaving the whole assembly with only
one translational DoF.

Two Planar Constraints on Two Cubes

7-33

7 Modeling with Computer-Aided Design

Exporting the Assemblies and Generating SimMechanics
Models
To create models from the assemblies,

1 Export the two assemblies into the XML files prismatic1.xml and
prismatic2.xml.

2 Copy or move them to a MATLAB working directory. At the MATLAB
command line, generate SimMechanics models using import_physmod.

In both models, the assemblies are translated into the prismatic1 and
prismatic2 subsystems, respectively. Each subsystem has eight blocks. The
Prismatic Joint represents the single translational DoF between the two
cubes with one prismatic primitive along the z-axis.

Modeling a Revolute Joint
In the following assembly, the two cubes are constrained to have only a
single rotational degree of freedom (DoF) between them. In the translated
SimMechanics model, this single DoF is a revolute joint.

Viewing the Assembly
To see an assembly with one rotational DoF,

1 Open the assembly file revolute.ASSEMBLYFILETYPE and examine the
CAD hierarchy.

2 Locate and expand the constraints (Mates) node. There are two constraints
on the two cubes.

• Highlight the first constraint, Concentric1. The constraint geometry is
highlighted in the assembly. This constraint allows the two cubes to
slide along and rotate about the z-axis running through the center of the
parallel and concentric upper holes of each cube.

• Highlight the second constraint, Coincident1. The constraint geometry is
highlighted in the assembly. This constraint allows the two cubes to slide
along the x-y plane, with the parallel sides sharing a common plane. It
also allows the two cubes to rotate about the z-axis. The cubes are not

7-34

Designing and Exporting CAD Constraints

allowed to rotate about any other axis, or to translate perpendicular
to the x-y plane.

These two constraints mean that the two cubes can only rotate about the
z-axis orthogonal to the x-y plane, leaving the whole assembly with only one
rotational DoF.

Exporting the Assembly and Generating the Model
Now generate a model based on this assembly.

1 Export the assembly as revolute.xml. Copy or move it to a MATLAB
working directory.

2 At the MATLAB command line, generate a SimMechanics model using
import_physmod.

The assembly is translated into an eight-block subsystem called revolute.
The Revolute Joint represents the single rotational DoF between the two
cubes with one revolute primitive about the z-axis.

Modeling an Inplane Joint
In the following assembly, the two cubes are constrained to have only two
translational degrees of freedom (DoFs) between them. In the translated
SimMechanics model, these two DoFs are two prismatic joints.

Viewing the Assembly
To see an assembly with two translational DoFs,

1 Open the assembly file inplane.ASSEMBLYFILETYPE and examine the
CAD hierarchy.

2 Locate and expand the constraints (Mates) node. There are two constraints
on the two cubes.

• Highlight the first constraint, Coincident2. The constraint geometry is
highlighted in the assembly. This constraint allows the two cubes to
slide along the y-z plane, with the two sides marked “SimMechanics”
sharing a common plane. It also allows the two cubes to rotate about the

7-35

7 Modeling with Computer-Aided Design

x-axis. The cubes are not allowed to rotate about any other axis, or to
translate perpendicular to the y-z plane.

• Highlight the second constraint, Parallel1. The constraint geometry is
highlighted in the assembly. This constraint allows the two cubes to slide
parallel to the x-z plane, with the two sides marked “The MathWorks’’
parallel but not necessarily in the same plane. It also allows the two
cubes to translate perpendicular to the x-z plane and to rotate about the
y-axis. The cubes are not allowed to rotate about any other axis.

These two constraints mean that the two cubes can only slide in the y-z plane,
leaving the whole assembly with only two translational DoFs.

Exporting the Assembly and Generating the Model
Now generate a model based on this assembly.

1 Export the assembly as inplane.xml. Copy or move it to a MATLAB
working directory.

2 At the MATLAB command line, generate a SimMechanics model using
import_physmod.

The assembly is translated into a subsystem, inplane, having eight blocks.
The In-Plane Joint represents the two translational DoFs between the two
cubes with two prismatic primitives, along the y-axis and the z-axis.

Modeling a Spherical-Spherical Massless Connector
In the following assembly, the two cubes are constrained to have six rotational
degrees of freedom (DoFs) between them, represented by two spherical
primitives. The spherical primitives pivot independently about two pivot
points at a fixed relative distance. In the translated SimMechanics model, a
spherical-spherical massless connector represents these six DoFs.

Viewing the Assembly
To see an assembly with three rotational DoFs separated from three other
rotational DoFs,

1 Open the assembly file

7-36

Designing and Exporting CAD Constraints

spherical_spherical_massless_connector.ASSEMBLYFILETYPE

and examine the CAD hierarchy.

2 Locate and expand the constraints (Mates) node. There is one constraint
on the two cubes.

Highlight this constraint, Distance1. The two spherical pivot points are
highlighted as small red or green squares, one on each cube. These points
are the endpoints of the rigid massless connector. The cubes can move such
that the distance between these two points (the length of the massless
connector) does not change. The constraint allows the two cubes to pivot
independently about their connector endpoints.

Distance Constraint on Two Cubes

7-37

7 Modeling with Computer-Aided Design

Exporting the Assembly and Generating the Model
Now generate a model based on this assembly.

1 Export the assembly as

spherical_spherical_massless_connector.xml

Copy or move it to a MATLAB working directory.

2 At the MATLAB command line, generate a SimMechanics model using
import_physmod.

The assembly is translated into an eight-block subsystem called
spherical_spherical_massless_connector, arranged in the common
structure described in “Block Structure of the Two-Part Models” on page 7-28.

The Spherical-Spherical massless connector Joint block represents the two
spherical primitives, each with three rotational DoFs, independently pivoting
at each end of the massless, rigid connector connecting the two cubes.

7-38

Creating a CAD-Based Robot Arm Model

Creating a CAD-Based Robot Arm Model
The example of this section is based on a more complex CAD assembly, a robot
arm. It includes multiple parts, multiple constraints, and a subassembly.

• “Viewing the Robot Arm Assembly” on page 7-40

• “Exporting the Robot Arm Assembly” on page 7-41

• “Generating and Completing the Robot Arm Model” on page 7-41

• “Simulating and Observing the Robot Arm Motion” on page 7-45

Locate the 11 CAD files for the robot arm are. They are

Filename CAD Filetype

robot.ASSEMBLYFILETYPE Assembly

grip.ASSEMBLYFILETYPE Subassembly (flexible)

base.PARTFILETYPE
forearm.PARTFILETYPE
upperarm.PARTFILETYPE
wrist.PARTFILETYPE

Parts (main assembly)

fingertips.PARTFILETYPE (twice)
firstfingerlink.PARTFILETYPE
firstfingerlinkL.PARTFILETYPE
metacarpal.PARTFILETYPE
secondfingerlink.PARTFILETYPE (twice)

Parts (subassembly)

7-39

7 Modeling with Computer-Aided Design

Viewing the Robot Arm Assembly
Open the assembly file for the whole robot.

Robot Arm Assembly in a CAD Platform

Then examine the CAD hierarchy:

• Five of the part files are grouped into the subassembly grip.
The subassembly uses two instances each of fingertips and
secondfingerlink.

• The subassembly has its own group of 18 constraints, MateGroup1.

Two constraints, Angle1 and Angle2, are not active. If they were, they
would lock the grip fingers into the open position. Here, each grip finger
can move separately.

• The other four part files are separate and grouped into the main assembly.

• The main assembly has its own MateGroup1, consisting of seven
constraints.

7-40

Creating a CAD-Based Robot Arm Model

The whole assembly has eight DoFs. The grip subassembly alone contains
two, allowing each finger to open and close separately. The main assembly
has six DoFs:

• The upper arm can move relative to the base by pitching, yawing, and
rolling (three DoFs).

• The forearm can yaw relative to the upper arm (one DoF).

• The wrist can pitch relative to the forearm (one DoF).

• The grip can rotate about its symmetry axis (one DoF).

Exporting the Robot Arm Assembly
Apply any changes you want to the assembly configuration or settings. If you
change the assembly or any subassemblies, you need to rebuild the assembly
before exporting it to XML.

Now export the assembly into Physical Modeling XML. The XML file
robot.xml appears in your working CAD directory.

Generating and Completing the Robot Arm Model
Now generate a model for a robot arm based on the file robot.xml. You can
use this preconfigured demo file or export your own version of the XML file
from the robot arm CAD assembly. In either case, copy or move the XML file
to your MATLAB working directory.

See “Creating Models from Physical Modeling XML” on page 7-14 to learn
more about how to generate models from XML files.

Generating the Initial Model
The preconfigured robot.xml file is located in the MATLAB directory

toolbox/physmod/mech/mechdemos/

1 Generate the model by entering

import_physmod('robot')

7-41

7 Modeling with Computer-Aided Design

at the command line. The status bar appears and indicates the progress
of model generation.

A model window, named robot, opens and is populated with blocks.

2 Save this initial body-joint model as robot, and note these properties:

• The whole robot arm assembly is contained in the subsystem robot.

• The top level of the assembly has 13 blocks and the grip-1 subsystem.

• The grip-1 subsystem has 18 blocks.

The original robot arm assembly has eight DoFs, with two in the grip
subassembly and six at the top level. These translate into eight DoFs in
the SimMechanics model:

– Six DoFs occur at the top level. These include the upper arm relative
to the base, the forearm relative to the upper arm, the wrist relative
to the forearm, and the grip relative to the wrist.

– Two DoFs occur in the subsystem. These are the rotational DoFs of
the two grip fingers.

There are eight revolute primitives in the subsystem. They occur
in two closed loops as two independent four-bar mechanisms. Each
four-bar mechanism actually has only one independent DoF because
each four-bar loop closes on itself. (See “Four Bar Mechanism” on page
2-36 and “Counting Degrees of Freedom” on page 4-77.)

Obtaining Simulink and Additional SimMechanics Blocks
To modify and extend the robot arm model, you need blocks from the
SimMechanics and Simulink block libraries. Open these libraries by entering
mechlib and simulink, respectively, at the command line.

You can also open the Simulink library from the MATLAB window menu or
toolbar.

Editing the Bodies
Some of the bodies in the generated robot arm model are redundant. You can
remove them without affecting the model’s dynamics, as long as you properly
reconnect the remaining blocks.

7-42

Creating a CAD-Based Robot Arm Model

• At the top level, the SimMechanics_RootPart block is a zero-mass,
zero-inertia Root Body. You can delete it, along with the connected Weld1
block, then reconnect the Root Ground to the base-1 block through the
Weld block.

• In the grip-1 subsystem, you can delete the grip-1 (Root Body) block and
the connected Weld block because they are unnecessary. You can also delete
the associated body coordinate system on the metacarpal-1 Body block.

See the reference page for more details about the Body block.

Editing the Joints
The non-Weld Joint blocks, those that carry DoFs, are Revolute and Spherical
Joints configured with the proper primitives to represent the original CAD
assembly’s DoFs.

• The first non-Weld Joint encountered as you move away from the Ground
block is a Spherical, representing three DoFs.

• Each Revolute block contains a single revolute primitive, representing one
rotational DoF.

Save this intermediate model as robot2.

Adding an Actuator and a Sensor
You can motion-actuate the wrist relative to the forearm.

1 Double-click the Revolute Joint that connects the forearm-1 and wrist-1
Body blocks. Change the Number of sensor/actuator ports to 2.

2 Click OK. Two new ports appear on the Joint.

3 From the SimMechanics Sensors & Actuators library, insert and attach a
Joint Actuator and a Joint Sensor to these new ports.

4 Configure the Joint Actuator to accept motion signals. Be sure the angular
units are deg (degrees).

7-43

7 Modeling with Computer-Aided Design

5 From the Simulink library, insert a Sine Wave, a Mux, two Integrator
blocks, and one Scope block. Connect them to the previous blocks as shown
in the following figure. Rename the Scope block to Pitch Angle.

Consult the Simulink documentation for more about these Simulink blocks.

6 In the Sine Wave block, set the Amplitude to 60*pi*pi and the
Frequency to 60. Leave all other defaults unchanged.

7 In the lower Integrator block, set Initial condition to -60*pi. Leave all
other defaults unchanged.

Configuring Tolerances
The original robot arm CAD assembly requires looser tolerances than
the SimMechanics defaults, and its motion can lead to singularities. To
avoid simulation errors or slowdown, you need to reconfigure the assembly
tolerances and constraint solver.

1 Open the Machine Environment block.

7-44

Creating a CAD-Based Robot Arm Model

2 On the Parameters panel, reset the Linear assembly tolerance to 1e-2
m (meters) and the Angular assembly tolerance to 1e-1 rad (radians).

3 On the Constraints panel, select the Use robust singularity handling
check box. Leave all other defaults. Click OK.

4 Resave your finished model as robot3.

Simulating and Observing the Robot Arm Motion
You can now run robot3 and examine its motion.

To use the motion sensor,

1 Double-click the Pitch Angle block to open a scope.

2 Click the Start simulation button. The scope plot displays a trace of the
pitch angle motion.

To visualize the body motions,

1 From the Simulation menu, select Configuration Parameters, then
the SimMechanics node.

2 Select Display machines after updating diagram and Show
animation during simulation. Click OK.

3 Select Update Diagram from the Edit menu. The SimMechanics
visualization window opens.

4 In the SimMechanics menu of the visualization window, select Machine
Display, then Ellipsoids. The display now shows the robot arm’s
component bodies as ellipsoids.

5 Click the Start button. The simulation begins. Observe the robot arm
motion in the SimMechanics window.

7-45

7 Modeling with Computer-Aided Design

Modeling a Stewart Platform in CAD
This section introduces a complex computer-aided design (CAD) assembly
that models the Stewart platform, a six-degree-of-freedom (DoF) mechanical
system used for accurate positioning applications.

• “Viewing the Stewart Platform Assembly” on page 7-47

• “Exporting the Stewart Platform Assembly” on page 7-48

• “Generating the Stewart Platform Model” on page 7-48

• “Visualizing the Stewart Platform Motion” on page 7-51

Note The Stewart platform assembly of this section is an advanced example
of computer-aided design. You should work through the previous examples of
this chapter before attempting to work with this assembly.

To learn more about the Stewart platform, see Chapter 9, “Case Studies”.

Locate the 45 CAD files for the Stewart platform. The master assembly file is

stewart_platform.ASSEMBLYFILETYPE

What the Stewart Platform Does
The Stewart platform consists of two plates connected by six mobile and
extensible legs. The lower or base plate is immobile. The upper or mobile
plate has six degrees of freedom, three rotational and three translational. The
platform is highly stable and easy to control.

The platform’s six legs each have two parts, an upper and a lower leg, with a
piston-like cylindrical DoF between each pair of parts. The legs are connected
to the base plate and the top plate by universal joints at each end of each leg.
(These universals are not just sets of abstract DoFs. Each also contains a
spider-like body, while also having two DoFs.) The upper part of each leg can
slide into and out of the lower leg, allowing each leg to be varied in length. The
position and orientation of the mobile platform (top plate) varies depending
on the lengths to which the six legs are separately adjusted.

7-46

Modeling a Stewart Platform in CAD

Once the top is connected to the legs, the entire Stewart platform assembly
has 36 DoFs. Only six DoFs are independent, the same as the top plate would
have if it were disconnected. You can think of these independent DoFs as the
six adjustable leg lengths or as equivalent to the six DoFs of the mobile plate.
See “Counting Degrees of Freedom” on page 4-77.

Viewing the Stewart Platform Assembly
Open the master assembly file, stewart_platform.ASSEMBLYFILETYPE. Click
the assembly and rotate it to view the top and bottom plates and the legs.

Stewart Platform CAD Assembly

The CAD hierarchy for the Stewart platform contains assemblies for the top
and base plates, as well as assemblies for the six legs. All the constraints on
the assembly parts are grouped into one group, containing 30 constraints.
There are 448 component parts and 38 subassemblies, which you can open
individually to examine the separate parts.

The base plate is about 24 centimeters (cm) in diameter, the top plate about
16.5 cm. When centered and oriented flat, the top plate is about 20 cm above

7-47

7 Modeling with Computer-Aided Design

the base. The assembly models the platform material as aluminum (about 2.7
grams per cubic cm).

Exporting the Stewart Platform Assembly
Apply any changes you want to the assembly configuration or settings. If you
change the assembly or any subassemblies, you need to rebuild the assembly
before exporting it to XML.

Now export the assembly into Physical Modeling XML. Because the assembly
is so complex, the export process takes longer than it does for simpler
assemblies. As the export proceeds, the translator highlights various parts
and subassemblies. When the highlighting stops, the export is finished.

The exported model appears as the XML file stewart_platform.xml in your
working CAD directory.

Generating the Stewart Platform Model
Now move or copy the stewart_platform.xml file into your working
MATLAB directory.

At the MATLAB command line, enter

import_physmod('stewart_platform')

and wait for SimMechanics to complete the generation of the new Simulink
model stewart_platform.

Inspecting the Generated Model and Counting Its DoFs
The entire Stewart platform model is contained in a subsystem, also called
stewart_platform. This subsystem itself contains seven subsystems.

7-48

Modeling a Stewart Platform in CAD

Stewart Platform Model: Base, Legs, and Top Plate

The subsystems correspond to the subassemblies of the original CAD
assembly: the base plate and the six platform legs.

• The base plate subassembly BaseRingAssembly-1 contains six
subassemblies, modeling a base swivel bearing for each leg.

• The six leg subassemblies, ActuatorAssm, model the upper and lower
halves of each leg and represent part of their DoFs.

7-49

7 Modeling with Computer-Aided Design

For each leg, there are six DoFs. Two pairs of revolutes associated with each
leg represent the two universal joints connecting each leg to the top and base
plates, respectively. Each of these universals has two DoFs.

• At the top level, there are two revolutes, one attached to either end of a leg
subassembly, connecting each leg to the base and top plates, respectively.

• Within each leg subassembly, there are two other revolutes, each one
connecting the leg to the top and base plates, respectively.

One of the revolutes inside the leg subassembly pairs with one of the revolutes
outside the leg assembly to make up a two-DoF universal. These pairs occur
twice on each leg, one connecting the leg to the top plate, the other connecting
the leg to the base plate.

• Within each leg subassembly, there is one prismatic, representing the leg’s
freedom to expand or contract along its shaft.

• Within each swivel bearing subassembly, itself located within the base ring
assembly, is another revolute representing each leg’s freedom to rotate
about its shaft.

Each leg has six DoFs. However, the constraints imposed by attaching each
leg to fixed points on the base and top plates, respectively, reduce these to
one independent DoF for each leg: the freedom to expand or contract along
its shaft.

• The rotational DoFs associated with the universals at the attachment
points are completely dependent on the leg’s prismatic DoF.

• The rotational DoFs associated with the cylindricals in each leg are
completely dependent on the universals at the top and bottom of each leg.

Deleting Unnecessary Bodies and Joints
The generated model contains a large number of redundant Root Weld and
zero-mass Root Part blocks. You can delete these and not affect the model’s
dynamics, if you take care to reconnect the remaining bodies properly after
deleting each Weld.

7-50

Modeling a Stewart Platform in CAD

Adding Actuators and Sensors
If you want the motion of the platform to be controlled by something other
than gravity, you need to add the appropriate Actuators to the model. To
quantify the model’s motion, you need to make precise measurements with
Sensors. You can drive the actuators with external control signals to model an
open-loop controller for the Stewart platform. If you introduce feedback from
the sensors to the actuators, you can model a closed-loop controller.

You can find out more about using actuator and sensor blocks in Chapter
4, “Modeling Mechanical Systems”.

Visualizing the Stewart Platform Motion

Note Find more information about SimMechanics visualization in Chapter 6,
“Visualizing and Animating Machines”.

Without any external forces acting, apart from gravity, the platform collapses
under its own weight. You can verify this by running and visualizing your
Stewart platform model.

1 From the Simulation menu, select Configuration Parameters. The
Configuration Parameters dialog opens. Choose the SimMechanics
node.

2 Select Display machines after updating diagram and Show
animation during simulation. Click Apply or OK.

3 From the Edit menu, select Update Diagram. The SimMechanics
visualization window opens with the SimMechanics controls. The window
displays the Stewart platform in its initial position.

4 Start the simulation by clicking the Start button in the toolbar of either
the visualization window or the model window.

The mobile plate falls under its own weight and reaches the base plate in
about 0.2 seconds. Because there is nothing to stop the legs or the top plate,
the platform continues to collapse: the mobile plate falls below the base plate,
and the upper and lower parts of each leg come apart.

7-51

7 Modeling with Computer-Aided Design

SimMechanics Visualization of the CAD-Based Stewart Platform

7-52

8

Analyzing Motion

SimMechanics features analysis modes for studying machine motion beyond
the simple forward dynamics integration of forces. This chapter explains how
to specify machine motion, then deduce the necessary forces and torques, with
the inverse dynamics and kinematic analysis modes. You can also specify a
machine steady state and analyze perturbations about any machine trajectory
by trimming and linearizing your model, respectively.

Dynamics of Mechanical Systems
(p. 8-2)

Review of how forces and torques
produce accelerations

Finding Forces from Motions (p. 8-7) Examples of the Inverse Dynamics
and Kinematics analysis modes of
SimMechanics

Trimming Mechanical Models
(p. 8-18)

Examples of finding machine steady
states with the Trimming mode of
SimMechanics

Linearizing Mechanical Models
(p. 8-32)

Examples of analyzing linear
response of perturbed mechanical
systems with SimMechanics and
Simulink

Chapter 9, “Case Studies” covers more sophisticated motion analysis and
control design techniques applied to more complex systems.

8 Analyzing Motion

Dynamics of Mechanical Systems
As explained in Chapter 3, “Representing Motion”, kinematics describes the
motion of bodies, while dynamics explains the motion in terms of forces and
torques. By Newton’s laws of motion, the accelerations of the bodies’ positions
are directly related to the forces and torques applied to the bodies.

• You can predict accelerations if you are given the applied forces/torques,
or relate known accelerations to the forces/torques that cause them, as
explained in “Forward and Inverse Dynamics” on page 8-2.

• “Forces and Torques Determine Accelerations” on page 8-3 presents
Newton’s laws of dynamics for translational and rotational motion.

The books of Goldstein [2] and José and Saletan [6] present rigid body
mechanics in great detail.

Forward and Inverse Dynamics
Dynamical equations such as Newton’s laws of motion relate cause and effect.
In mechanics, the cause is a set of forces and torques applied to the bodies
of a mechanical system; the effect is the set of resulting motions. Dynamical
equations allow you to analyze motion in either direction:

• In forward dynamics, you apply a given set of forces/torques to the bodies
to produce accelerations. SimMechanics integrates the accelerations twice
to yield the velocities and positions as functions of time.

A set of initial conditions is needed to specify the initial positions and
velocities and produce a complete solution for the motion. Initial conditions
must be checked for consistency with constraints.

• Inverse dynamics starts with given motions as functions of time and
differentiates them twice to yield the forces and torques needed to produce
the given motions. The given motion functions of time must be checked for
consistency with constraints.

You can use SimMechanics to analyze mechanical motion in both cases by
choosing an analysis mode. The mode you choose can depend on the topology
of your system.

8-2

Dynamics of Mechanical Systems

Analysis Mode Type of Analysis

Forward Dynamics Forward dynamics (any topology)

Trimming Forward dynamics (steady-state motion)

Inverse Dynamics Inverse dynamics (open topology)

Kinematics Inverse dynamics (closed topology)

Applying the Motion Modes
For more about motion modes, see these other sections.

• “Simulating and Analyzing Mechanical Motion” on page 1-20 is an overview
of the SimMechanics analysis modes.

• “Analyzing the Motion” on page 5-7 contains detailed steps to implement
these modes in your model.

• The case study “Finding Forces from Motions” on page 8-7 applies inverse
dynamics to SimMechanics models.

Forces and Torques Determine Accelerations
Newton’s second law of motion relates the force on a body, its mass, and
the acceleration it experiences as a result of that force. The equivalents for
rotational motion are the Euler equations.

Newton’s Equations for Translational Dynamics
Let FA be the net force acting on a body A that has a constant mass mA and a
center of gravity (CG) position xA. Newton’s second law, valid for an inertial
observer, relates the force on A to the translational acceleration of its CG.

F
x

A A
Am

d

dt
=

2

2

Equivalently, the linear momentum pA = mAvA relates to force as FA = dpA/dt.

In forward dynamics, the force FA is given and the motion xA(t) is found
by integration, supplemented by initial position and velocity. In inverse

8-3

8 Analyzing Motion

dynamics, the motion xA(t) is given and the force on the body is found. In
both cases, the mass must be known.

Euler’s Equations for Rotational Dynamics
Rotational motion requires a pivot, the fixed center of rotation, and the
angular velocity vector ω with respect to that pivot. If r is the position, with
respect to the pivot, of any point in a body, the velocity v of that point is v
= ω X r.

The equivalent of the mass of a body in rotational dynamics is the inertia
tensor I, a 3-by-3 matrix.

I dV r rij ij i j
V

= −⎡
⎣⎢

⎤
⎦⎥ ()∫ δ ρr r2

The body’s mass density ρ(r) is a function of r within the body’s volume V.
The indices i, j range over 1, 2, 3, or x, y, z. Thus

I dV y z I dV xyxx
V

xy
V

= +⎡
⎣

⎤
⎦ = −[]∫ ∫ , 2 2 ρ ρ() , ()r r etc.

The angular momentum of a body is L = I·ω. The equivalent of the force on a
body in rotational dynamics is the torque τ, which is produced by a force F
acting on the body at a point r as τ = r X F.

The analog to Newton’s second law for rotational motion, as measured by an
inertial observer, just equates the torque τA applied to a body A, defined with
respect to a given pivot, to the time rate of change of LA. That is, τA = dLA/dt.
It is easiest to take the pivot as the origin of an inertial coordinate system
such as World. Unlike the case of translational motion, however, where the
mass mA remains constant as the body moves, the inertia tensor IA changes as
the body rotates, if it is measured in an inertial frame. There is no simple way
to relate dLA/dt to the angular acceleration dω/dt.

The common solution to this difficulty is to work in the body’s own rotating
frame, where the inertia tensor is constant, and take the body’s CG as
the pivot. Diagonalize the inertia tensor. Since I is real and symmetric,
its eigenvalues (I1, I2, I3) (the principal moments of inertia) are real. Its

8-4

Dynamics of Mechanical Systems

eigenvectors form a new orthogonal triad, the principal axes of the body. But
this frame fixed in the body is not inertial, and the torque-angular acceleration
relationship is modified from its inertial form into the Euler equations:

I I I

I I I

I I I

1 1 2 3 2 3 1

2 2 3 1 3 1 2

3 3 1 2 1 2 3

ω ω ω τ

ω ω ω τ

ω ω ω τ

− −() =

− −() =

− −() =

The components of the rotational vectors here are projected along the
principal axes that move with the body’s rotation.

Linearizing the Dynamical Equations
To study a system’s response to and stability against external changes, you
can apply small perturbations in the motion or the forces/torques to a known
trajectory and force/torque set. SimMechanics and Simulink provide analysis
modes and functions for analyzing the results of perturbing mechanical
motion. The later sections of this chapter, demonstrate their use:

• “Trimming Mechanical Models” on page 8-18

• “Linearizing Mechanical Models” on page 8-32

You can perturb Newton’s and Euler’s laws with a small additional force F
and torque τ and determine the associated perturbations in motion, x
and ω. You can also perturb the system inversely, making small changes
to the motion and determining the forces and torques necessary to create
those changes.

The perturbed Newton’s and Euler’s equations are

F x= ⋅ ()m d dt2 2Δ

and

8-5

8 Analyzing Motion

I I I

I I I
1 1 2 3 2 3 2 3 1

2 2 3 1 3 1 3 1

Δ Δ Δ Δ

Δ Δ Δ

ω ω ω ω ω τ

ω ω ω ω ω

− ⋅ + ⋅() −() =

− ⋅ + ⋅() −(() =

− ⋅ + ⋅() −() =

Δ

Δ Δ Δ Δ

τ

ω ω ω ω ω τ
2

3 3 1 2 1 2 1 2 3I I I

The vector components of the Euler’s equations are projected along the body’s
moving principal axes.

Linearizing the Constraints
If your model has constraints, you must perturb them as well:

g t
g g

x x
x

x
x

x, , , �
�

�() = ∂
∂

⋅ + ∂
∂

⋅ =0 0Δ Δ

8-6

Finding Forces from Motions

Finding Forces from Motions
The SimMechanics Kinematics and Inverse Dynamics modes (see “Analyzing
the Motion” on page 5-7) enable you to find all the forces on a closed-loop
system or an open system, respectively, given a model that completely specifies
the system’s motions. Unlike Forward Dynamics mode, these modes do not
need to compute the positions, velocities, and accelerations of the model’s
components, because the model specifies them. Consequently, Kinematics and
Inverse Dynamics modes take less time to compute the forces on a system. The
time saving depends on the size and complexity of the system being simulated.

To use these modes, you must first build a model of the system that specifies
completely the positions, velocities, and accelerations of the system’s bodies.
Such a model is called a kinematic model. You create a kinematic model by
interconnecting blocks representing the bodies and joints of the system and
then connecting actuators to the joints to specify the motions of the bodies.

A model does not have to actuate every joint to specify completely the motions
of a system. In fact, the model need actuate only as many joints as there are
independent degrees of freedom in the system. (See “Counting Degrees of
Freedom” on page 4-77.) For example, a model of a four bar mechanism need
actuate only one of the mechanism’s joints, because a four bar mechanism has
only one degree of freedom. To avoid overconstraining the model’s solution, the
number of actuated joints should not exceed the number of degrees of freedom.

Caution Attempting to simulate an overconstrained model causes Simulink
to stop the simulation with an error.

The following sections show how to use the Inverse Dynamics and Kinematics
modes to find the forces on the joints of a closed- and an open-topology system,
respectively.

• “Inverse Dynamics Mode with a Double Pendulum” on page 8-8

• “Kinematics Mode with a Four Bar System” on page 8-13

8-7

8 Analyzing Motion

Inverse Dynamics Mode with a Double Pendulum

Note The Inverse Dynamics mode works only on open topologies and requires
motion-actuating every independent DoF (see “Counting Degrees of Freedom”
on page 4-77).

Consider a double pendulum consisting of two thin rods each 1 meter long
and weighing 1 kilogram. The upper rod is initially rotated 15 degrees from
the perpendicular.

Suppose that you want the pendulum to follow a certain trajectory. How much
torque is required to make the pendulum follow this prescribed motion?
Solving this problem entails building a kinematic model of the moving
pendulum.

• The model must represent the geometry of the double pendulum and
specify its motion trajectory throughout the simulation.

• The model must also measure the computed torque on each joint, the torque
necessary to reproduce the specified motion.

Except in simple cases, you can find these computed torques only as
approximate functions of time.

8-8

Finding Forces from Motions

The kinematic model can take different approaches to specifying the initial
state of the pendulum.

• One approach uses Body block parameters to specify the initial states.

• Another approach uses Actuator block signals.

Using Body Blocks to Specify Initial Conditions
Open the model mech_dpend_invdyn1. It illustrates the Body block approach
to modeling initial states.

This model represents the pendulum by two Body blocks and two Revolute
Joint blocks.

8-9

8 Analyzing Motion

• The CS1 axis of the upper body (B1) of the pendulum is rotated 15 degrees
from the perpendicular (see annotation for block B1).

• The coordinate systems for the lower block (B2) are aligned with CS1 of the
upper block. The CS1 of B2 is rotated -15 degrees relative to CS1 of B1, i.e.,
it is perpendicular to the World coordinate system.

Using Actuator Blocks to Specify the Initial States
Open the model mech_dpend_invdyn2. It shows the use of Joint Actuator
blocks to specify the initial kinematic state. Using actuators to specify the
displacement slightly simplifies the configuration of the Body blocks.

8-10

Finding Forces from Motions

Specifying the Motion and Measuring the Computed Torques
In either model, the Joint Actuator blocks connected to the Joint blocks specify
that the upper and lower joints accelerate at two distinct rates, π/2 and -π/4
radians/second2, respectively. Sensor blocks connected to To Workspace blocks
measure the computed torques on the upper and lower joints as MATLAB
workspace variables torque_upper and torque_lower, respectively. These
vectors capture the upper and lower computed torques at each major time
step. You must simulate either model in Inverse Dynamics mode to compute
the joint torques required to maintain the pendulum in its motion.

Using the Computed Torques in Forward Dynamics
Once you know the computed torques as functions of time, you can verify that
these are the correct answers by creating a version of the model that applies
the computed torques to the joints and simulating that model in Forward
Dynamics mode.

Open the model mech_dpend_act. It illustrates a forward dynamics version of
the kinematic model that uses the joint actuators to specify the initial angular
displacement of the pendulum bodies.

8-11

8 Analyzing Motion

This model uses Initial Condition blocks to specify the initial 15 degree
displacement of the upper body from the vertical in the world coordinate
system and the corresponding initial -15 degree displacement of the lower
body from the vertical in the coordinate system of the upper body. The
negative displacement of the lower body is equivalent to positioning it as
vertical in the world coordinate system.

From a MAT-file, the model loads the upper and lower torques,
torque_lower_fcn and torque_upper_fcn, as two matrices representing
discrete functions of time. Simulating this model in Forward Dynamics mode
results in the following display on the upper joint scope.

8-12

Finding Forces from Motions

If the computed torques were known exactly as continuous functions of time
in the two inverse dynamics models, this plot would exactly match the upper
joint motion in the original models. But the torques are measured only in a
discrete approximation, and mech_dpend_act does not exactly reproduce the
original motion.

Making More Accurate Torque Measurements
You can achieve better approximations by adjusting Simulink to report sensor
outputs in the original models with finer time steps. Refer to the Simulink
documentation for more about exporting simulation data and refining output.

Kinematics Mode with a Four Bar System

Note The Kinematics mode works only on closed topologies and requires
motion-actuating every independent DoF (see “Counting Degrees of Freedom”
on page 4-77). There must also be no Joint Stiction Actuators and no
nonholonomic constraints.

Consider the four bar system illustrated by the tutorial titled “Four Bar
Mechanism” on page 2-36. The model is mech_four_bar.

8-13

8 Analyzing Motion

Suppose that you want to keep this system from collapsing under its own
weight. Because the four bar has only one degree of freedom, applying a
counterclockwise torque to the joint labeled Revolute1 would accomplish this
objective. But how much torque is sufficient?

To answer this question, you must build a kinematic model of the stationary
four bar system, starting with the tutorial model. The kinematic model must
specify how the system moves over time. In this case, the four bar remains
stationary. You can use a Joint Actuator to implement this requirement.

Transforming Forward into Inverse Dynamics
Open the model mech_four_bar_kin, derived from mech_four_bar.

• The model uses a Joint Actuator block driven by a Constant block to
specify the motion on the Revolute1 joint. The Constant block outputs
a three-element vector that specifies the angular position, velocity, and
acceleration, respectively, of the joint as 0.

• The model uses a Joint Sensor block connected to a Scope block to display
the resulting torque on the joint and a To Workspace block to save the
torque signal to the MATLAB workspace.

8-14

Finding Forces from Motions

Finding and Checking the Needed Torque
Now obtain and verify the inverse dynamics solution to the question.

1 Run this model in Kinematics mode. The output reveals that the torque
on the Revolute1 joint is 27.9032 newton-meters.

8-15

8 Analyzing Motion

2 To verify that the computed torque is, indeed, the torque required to keep
the system stationary, create a forward-dynamics model that applies the
computed torque to the Revolute1 joint. Open such a model contained in
mech_four_bar_stat.

3 Run the model in Forward Dynamics mode, with the Revolute1 Angle
Scope open.

The Scope display reveals that the machine does, indeed, remain stationary,
although only for about 1.5 seconds. The model is nonlinear and unstable,
and the computed force value is not copied exactly in the new model.

8-16

Finding Forces from Motions

8-17

8 Analyzing Motion

Trimming Mechanical Models
Trimming a mechanical system refers to the finding of solutions for inputs,
outputs, states, and state derivatives satisfying conditions that you specify
beforehand. For example, you can seek steady-state solutions where some or
all of the derivatives of a system’s states are zero. To use the Simulink trim
command on a system represented by a SimMechanics model, you must select
the SimMechanics Trimming mode (see “Analyzing the Motion” on page 5-7).
You must also specify the conditions that the solution must satisfy. These
examples show you how to trim mechanical models.

• “Unconstrained Trimming of a Spring-Loaded Double Pendulum” on page
8-20

• “Constrained Trimming of a Four Bar Machine” on page 8-26

Consult the Simulink documentation for more on trimming models. You can
also enter help trim at the MATLAB command line.

Restrictions on Trimming Mechanical Models
You should avoid using certain SimMechanics or Simulink features when
trimming a model.

• A trimmed SimMechanics mechanism must be assembled. Do not use
disassembled joints while trimming.

For more information, see “Modeling with Disassembled Joints” on page
4-33.

• You cannot use Driver blocks while trimming a model.

• SimMechanics ignores Joint Initial Condition Actuator blocks in a trimmed
model.

• Do not incorporate events or motion discontinuities in your trimmed model.
In particular, do not use SimMechanics Joint Stiction Actuator blocks.
Trimming mechanical models with stiction causes an error.

8-18

Trimming Mechanical Models

Trimming in the Presence of Motion Actuation
If you want to trim a SimMechanics model containing motion actuators, you
must

1 Make the velocity and position/angle parts of the motion actuation signal
dependent only on the acceleration signal

2 Make the velocity and position/angle consistent with the acceleration
part by use of Integrator blocks. A motion actuation signal is a vector
with components ordered as position/angle, velocity, and acceleration,
respectively.

This technique is recommended in “Stabilizing Numerical Derivatives in
Actuator Signals” on page 4-45. It is required here.

During trimming, SimMechanics uses only the acceleration as an independent
motion actuation input because it is equivalent to a force or torque. As a
consequence, only the acceleration signal can be used as an independent
motion actuation input.

A similar restriction holds for model linearization; see “Linearizing in the
Presence of Motion Actuation” on page 8-33.

Motion Actuation as a Model Input for Trimming

Motion Actuation as an Indirect Input
You can put your model input port in another part of your model, then
feed that input as an acceleration into a motion actuator with a Simulink
signal line. You must still derive the velocity and position/angle motion
actuation signals in the same way: by integrating whatever signal you use for
acceleration once and twice, respectively.

8-19

8 Analyzing Motion

Unconstrained Trimming of a Spring-Loaded Double
Pendulum
Consider the following spring-loaded double pendulum.

The joint connecting the upper and lower arms of this pendulum contains a
torsional spring and damper system that exerts a counterclockwise torque
linearly dependent on the angular displacement and velocity of the joint.
Suppose that the lower arm is folded upward almost vertically and then
allowed to fall under the force of gravity. At what point does the spring-damper
system reach equilibrium. That is, at what point does it cease to unfold?

Making an Initial Equilibrium Guess
To find an equilibrium point for the spring-loaded double pendulum,

8-20

Trimming Mechanical Models

1 Build a SimMechanics model of the system. This diagram shows an
example of such a model, mech_dpend_trim.

• This model uses Body blocks to model the upper and lower arms of
the pendulum and a Revolute Joint block (J1) to model the connection
between the pendulum and ground.

• The model uses a Subsystem block (J2) to model the spring-loaded
revolute joint between the arms. This subsystem uses a negative
feedback loop to model a joint subject to a damped torsional spring
by multiplying the angular displacement and velocity of the joint,
respectively, by spring and damper constants. The loop sums the

8-21

8 Analyzing Motion

resulting torques and feeds them back into the joint with a Joint
Actuator block.

The result is that the joint experiences a torque opposing its motion and
proportional to its angular displacement and velocity. You could also model
this damped torsional spring with a Joint Spring & Damper block.

The spring and damper constants used here were chosen by running the
model with various candidate values and choosing the ones that resulted in
a moderate deflection of the pendulum.

2 Run the model in Forward Dynamics mode to estimate an initial guess for
the nontrivial equilibrium point of the pendulum.

The simulation reveals that the spring stops unfolding after about 9
seconds; that is, it reaches a steady-state point. At this point the angles
of the upper and lower joints are about -18 and -51 degrees, respectively,

8-22

Trimming Mechanical Models

and the velocities are zero. The trim command can find the values of these
states precisely.

Analyzing and Initializing the State Vector
Examine the model’s state vector and prepare it for use in trimming.

1 Determine the layout of the model’s state vector, in order to tell the trim
command where in the model’s state space to start its search for the
pendulum’s equilibrium point (the point where it stops unfolding). Use
the SimMechanics mech_stateVectorMgr command to perform this task.
Refer to the Ground block, G.

v = mech_stateVectorMgr('mech_dpend_trim/G');
v.StateNames

ans =
'mech_dpend_trim/J2/RevoluteJoint:R1:Position'
'mech_dpend_trim/J1:R1:Position'
'mech_dpend_trim/J2/RevoluteJoint:R1:Velocity'
'mech_dpend_trim/J1:R1:Velocity'

The StateNames field of the state vector object returned by
mech_stateVectorMgr lists the names of the model’s states in the order in
which they appear in the model’s state vector. Thus the field reveals that
the model’s state vector has the following structure:

x(1) = position of lower joint (J2)
x(2) = position of upper joint (J1)
x(3) = velocity of lower joint (J2)
x(4) = velocity of upper joint (J1)

2 Determine an initial state vector.

The initial state vector specifies the point in a system’s state space where
the trim command starts its search for an equilibrium point. The trim
command searches the state space outward from the starting point,
returning the first equilibrium point that it encounters. Thus, the starting
point should not be at or near any of a system’s trivial equilibrium points.
For the double pendulum, the point [0; 0; 0; 0] (i.e., the pendulum initially
folded up and stationary) is a trivial equilibrium point and therefore should

8-23

8 Analyzing Motion

be avoided. The initial state vector must be a column vector and must
specify angular states in radians.

Often, the choice of a good starting point can be found only by experiment,
that is, by running the trim command repeatedly from different starting
points to find a nontrivial equilibrium point. This is true of the double
pendulum of this example. Experiment reveals that this starting point,

ix(1) = J2 (lower joint) angle = -35 degrees = -0.6109 radians
ix(2) = J1 (upper joint) angle = -10 degrees = -0.1745 radians
ix(3) = J2 angular velocity = 0 radians/second
ix(4) = J1 angular velocity = 0 radians/second

yields a nontrivial equilibrium point. You can save time by creating an
initial state vector set to these values.

ix = [-35*pi/180; -10*pi/180; 0; 0];

Note The trim command ignores initial states specified by Joint Initial
Condition Actuator blocks. Thus, you cannot use these blocks to specify the
starting point for trimming a model. If your model contains IC blocks,
create the initial state vector as if the IC blocks did not exist.

Trimming the System to Equilibrium

1 Reset the analysis type to Trimming on the Parameters pane of the
Machine Environment dialog.

This option inserts a constraint subsystem and associated output at the top
level of the model. SimMechanics inserts the constraint output to make
the constraints available to the trim command. The spring-loaded double
pendulum has no constraints. Hence the constraint outport does not output
nontrivial constraint data and is not needed to trim the pendulum.

8-24

Trimming Mechanical Models

2 Enter the following commands to find the equilibrium point nearest to
the starting point.

ix = [-35*pi/180; -10*pi/180; 0; 0];
iu = [];
[x,u,y,dx] = trim('mech_dpend_trim',ix,iu);

The array ix specifies the starting point determined in “Analyzing and
Initializing the State Vector” on page 8-23. The array iu specifies the initial
inputs of the system. Its value is null because the system has no inputs.
(Thus the u and y outputs are null.) In this form, the trim command finds
a system’s steady-state (equilibrium) points, i.e., the points where the
system’s state derivatives are zero. The array x contains the state vector
corresponding to the first equilibrium point located by trim:

x =
-0.8882
-0.3165
-0.0000
0.0000

The resulting states are angular positions and velocities expressed in
radians. Based on the layout of the model’s state vector (determined

8-25

8 Analyzing Motion

previously in “Analyzing and Using the State Vector” on page 8-27) the
pendulum reaches equilibrium when its upper joint has deflected to an
angle of -18.1341 degrees and its lower joint to an angle of -50.8901 degrees.
The system state derivatives dx are zero, within tolerances.

Constrained Trimming of a Four Bar Machine
Consider a planar four bar system consisting of a crank, a coupler, and a
rocker. The following figure shows a block diagram and a convex hull diagram
of the four bar system. The model is mech_four_bar_trim.

This system is constrained by virtue of being a closed loop. Not all the degrees
of freedom are independent. (In fact, only one is.) Suppose you want to find
the torque required to turn the crank at an angular velocity of 1 radian/second
over a range of crank angles. This section outlines the procedure with the trim
command and the SimMechanics Trimming mode to determine the torque.

Setting Up the Four Bar for Trimming
Reconfigure the model before performing the trim.

1 Cut the closed loop that represents the four bar system at the joint
(Revolute1) connecting the rocker to ground (see “Modeling Bodies and
Grounds” on page 4-10).

8-26

Trimming Mechanical Models

Manually cutting the rocker joint ensures that SimMechanics does not
cut the four bar loop at the crank joint and thereby eliminate the crank’s
position and velocity from the system’s state vector.

For instructions and additional information on cutting joints, see “Cutting
Closed Loops” on page 4-36 and “Configuring SimMechanics Simulation
Diagnostics” on page 5-12.

2 Select Signal Dimensions from the Format > Port/Signal Displays
menu.

Simulink then displays the width of signals on the model diagram and
hence enables you to read the number of constraints on the four bar system
from the diagram in the next step.

3 Set the analysis mode to Trimming in the Machine Environment block.

SimMechanics then inserts a subsystem and an output block that outputs
a signal representing the mechanical constraints on the four bar system.
These constraints arise from the closure of the loop.

The width of the constraint signal (4) reflects the fact that the four bar
system is constrained to move in a plane and thus has only four constraints:
two position constraints and two velocity constraints.

Analyzing and Using the State Vector
Examine the state vector and prepare it for use in trimming.

1 Reveal the layout of the system’s state vector with mech_stateVectorMgr:

Handle = get_param('mech_four_bar_trim/Revolute2','handle');
StateManager = mech_stateVectorMgr(Handle);
StateManager.StateNames

8-27

8 Analyzing Motion

ans =
'mech_four_bar_trim/Revolute2:R1:Position'
'mech_four_bar_trim/Revolute3:R1:Position'
'mech_four_bar_trim/Revolute4:R1:Position'
'mech_four_bar_trim/Revolute2:R1:Velocity'
'mech_four_bar_trim/Revolute3:R1:Velocity'
'mech_four_bar_trim/Revolute4:R1:Velocity'

2 Specify the initial state vector x0 and the index array ix:

x0 = [0;0;0;0;0;1];
ix = [3;6];

The array x0 specifies that the trim command should start its search for a
solution with the four bar system in its initial position and with the crank
moving at an angular velocity (state 6) of 1 radian/second. The array
ix specifies that the angular position (state 3) and velocity (state 6) of
the crank must equal their initial values, 0 radians and 1 radian/second,
respectively, at the equilibrium point. It is not necessary to constrain the
other states because the four bar system has only one independent position
DoF and only one independent velocity DoF.

3 Specify zero as the initial estimate for the crank torque:

u0 = 0;

4 Require the constraint outputs to be 0:

y0 = [0;0;0;0];
iy = [1;2;3;4];

The y0 array specifies the initial values of the constraint outputs as zero.
The iy array specifies that the constraint outputs at the solution point
must equal their initial values (0). This ensures that the solution satisfies
the mechanical constraints on the system.

8-28

Trimming Mechanical Models

Note The four bar system has only constraint outputs. If you were
trimming a system with nonconstraint outputs, you would have to include
the nonconstraint outputs in the initial output vector.

5 Specify the state derivatives to be trimmed:

dx0 = [0;0;1;0;0;0];
idx = [6];

The dx0 array specifies the initial derivatives of the four bar system’s
states. In particular, it specifies that the initial derivative of the crank
angle (i.e., the crank angle velocity) is 1 radian/second and all the other
derivatives (i.e., velocities and accelerations) are 0. The idx array specifies
that the acceleration of the crank at the solution point must be 0; i.e.,
the crank must be moving at a constant velocity. It is not necessary to
constrain the accelerations of the other states because the system has only
one velocity DoF.

Note The four bar system has only mechanical states. If you were trimming a
system that has nonmechanical Simulink states, you would have to include
these nonmechanical states in the initial state vector.

Trimming the Four Bar
Carry out the trimming and study the output.

1 Trim the system at the initial crank angle to verify that you have correctly
set up the trim operation:

[x,u,y,dx] = ...
trim('mech_four_bar_trim',x0,u0,y0,ix,[],iy,dx0,idx);

Trim the system over a range of angles.

Angle = [];
Input = [];
State = [];

8-29

8 Analyzing Motion

dAngle = 2*pi/10;
Constraint = [];

for i=1:11;
x0(3) = (i-1)*dAngle;
x0(6) = 1;
[x,u,y,dx] = ...

trim('mech_four_bar_trim',x0,u0,y0,ix,[],iy,dx0,idx);
disp(['Iteration: ', num2str(i), ' completed.']);
Angle(i) = x0(3);
Input(:,i) = u;
State(:,i) = x;
Constraint(:,i) = y;
if (i>3),

u0 = spline(Angle,Input,Angle(end) + dAngle);
x0 = spline(Angle,State,Angle(end) + dAngle);

else
x0 = x;
u0 = u;

end; end;

2 Plot the results.

figure(1);
plot(Angle,Input);
grid;
xlabel('Angle (rad)');
ylabel('Torque (N-m)');
title('Input torque vs crank angle');

The following figure shows the resulting plot.

8-30

Trimming Mechanical Models

For More Information About Trimming Closed-Loop Systems
The following section, “Linearizing Mechanical Models” on page 8-32 contains
an example, “Closed-Loop Linearization: Four Bar Machine” on page 8-40,
of trimming the system in a different way, searching for the stable natural
equilibrium of the four bar mechanism.

8-31

8 Analyzing Motion

Linearizing Mechanical Models
The Simulink linmod command creates linear time-invariant (LTI) state-space
models from Simulink models. It linearizes each block separately. You can
use this command to generate an LTI state-space model from a SimMechanics
model, for example, to serve as input to Control System Toolbox commands
that generate controller models. The linmod command allows you to specify
the point in state space about which it linearizes the model (the operating
point). You should choose a point where your model is in equilibrium, i.e.,
where the net force on the model is zero. You can use the Simulink trim
command to find a suitable operating point (see “Trimming Mechanical
Models” on page 8-18). By default, linmod uses an adaptive perturbation
method to linearize model. The Machine Environment dialog allows you to
require that linmod use a fixed perturbation method instead (see “Analyzing
the Motion” on page 5-7). The following examples illustrate the use of linmod
to linearize SimMechanics models.

• “Open-Topology Linearization: Double Pendulum” on page 8-34

• “Closed-Loop Linearization: Four Bar Machine” on page 8-40

Consult the Simulink documentation for more on “Linearizing Models”. You
can also enter help linmod at the MATLAB command line.

Restrictions on Linearizing Mechanical Models
There are restrictions on how you linearize mechanical models.

• If you specify any joint primitive initial conditions with Joint Initial
Condition Actuator blocks, these initial condition values always override
any state vector initial values specified via the linmod command.

Joint primitives with JICA blocks are preferentially chosen for the set of
independent states in linearization.

• Avoid incorporating discrete events or motion discontinuities in a linearized
model. If you include event- or discontinuity-triggering blocks, ensure
that the machine does not induce discontinuities as it moves through the
linearized regime you are modeling.

Use of Joint Stiction Actuator blocks in a linearized model causes an error.

8-32

http://www.mathworks.com/products/control/

Linearizing Mechanical Models

• Because closed loops impose constraints on states, you cannot linearize a
closed-loop SimMechanics model with the linmod2 command.

Linearizing in the Presence of Motion Actuation
During linearization, SimMechanics uses only the acceleration as an
independent motion actuation input because it is equivalent to a force or
torque. A similar restriction holds for model trimming; see “Trimming in the
Presence of Motion Actuation” on page 8-19. As a consequence, the only motion
actuation signal that can be set as a model input is the acceleration signal.

If you want to linearize a SimMechanics model containing motion actuators,
you must

1 Make the velocity and position/angle parts of the motion actuation signal
dependent only on the acceleration signal

2 Make the velocity and position/angle consistent with the acceleration
part by use of Integrator blocks. A motion actuation signal is a vector
with components ordered as position/angle, velocity, and acceleration,
respectively.

This technique is recommended in “Stabilizing Numerical Derivatives in
Actuator Signals” on page 4-45. It is required here.

During linearization, SimMechanics uses only the acceleration as an
independent motion actuation input because it is equivalent to a force or
torque. As a consequence, only the acceleration signal can be used as an
independent motion actuation input.

A similar restriction holds for model trimming; see “Trimming in the Presence
of Motion Actuation” on page 8-19.

Motion Actuation as a Model Input for Linearization

8-33

8 Analyzing Motion

Motion Actuation as an Indirect Input
You can put your model input port in another part of your model, then
feed that input as an acceleration into a motion actuator with a Simulink
signal line. You must still derive the velocity and position/angle motion
actuation signals in the same way: by integrating whatever signal you use for
acceleration once and twice, respectively.

Open-Topology Linearization: Double Pendulum
Consider a double pendulum initially hanging straight up and down.

The net force on the pendulum is zero in this configuration. The pendulum is
thus in equilibrium.

8-34

Linearizing Mechanical Models

Open the mech_dpend_forw model.

Linearizing the Model
To linearize this model, enter

[A B C D] = linmod('mech_dpend_forw');

at the MATLAB command line. This form of the linmod command linearizes
the model about the model’s initial state.

8-35

8 Analyzing Motion

Note Joint initial conditions specified with IC blocks always override any
state vector initial values passed to the linmod command.

The double pendulum model in this example contains no IC blocks. The initial
conditions specified with the linmod command are therefore implemented
without modification.

Deriving the Linearized State Space Model
The matrices A, B, C, D returned by the linmod command correspond to the
standard mathematical representation of an LTI state-space model:

d dtx x u
y x u

= ⋅ + ⋅
= ⋅ + ⋅

A B
C D

where x is the model’s state vector, y is its outputs, and u is its inputs. The
double pendulum model has no inputs or outputs. Consequently, only A is not
null. This reduces the state-space model for the double pendulum to

d dtx x= ⋅A

where

A =
0 0 1.0000 0
0 0 0 1.0000

-137.3400 39.2400 0 0
39.2400 -19.6200 0 0

This model specifies the relationship between the state derivatives and the
states of the double pendulum. The state vector of the LTI model has the same
format as the state vector of the SimMechanics model. The SimMechanics
mech_stateVectorMgr command gives the format of the state vector as
follows:

vm = mech_stateVectorMgr('mech_dpend_forw/G');
vm.StateNames

8-36

Linearizing Mechanical Models

ans =
'mech_dpend_forw/J2:R1:Position'
'mech_dpend_forw/J1:R1:Position'
'mech_dpend_forw/J2:R1:Velocity'
'mech_dpend_forw/J1:R1:Velocity'

Right-multiplying A by the state vector x yields the differential state
equations corresponding to the LTI model of the double pendulum,

��

��
θ θ θ

θ θ θ
1 1 2

2 1 2

19 62 39 24

39 24 137 34

= − ⋅ + ⋅

= + ⋅ − ⋅

. .

. .

where

θ
θ

1

2

=
=

position of top joint (J1)
position of bottom joint (JJ2)

The array of coefficients on the right-hand side of the differential equations
represents a matrix of squared frequencies. The eigenvalues of this matrix
are the squared frequencies of the system’s response modes. These modes
characterize how the double pendulum responds to small perturbations in the
vicinity of the operating point, which here is the force-free equilibrium.

8-37

8 Analyzing Motion

The following Simulink model implements the state-space model represented
by these equations.

8-38

Linearizing Mechanical Models

Modeling the Linearization Error
This model in turn allows creation of a model located in mech_dpend_lin that
computes the LTI approximation error.

Running the model twice with the upper joint deflected 2 degrees and 5
degrees, respectively, shows an increase in error as the initial state of the
system strays from the pendulum’s equilibrium position and as time elapses.
This is the expected behavior of a linear state-space approximation.

8-39

8 Analyzing Motion

Closed-Loop Linearization: Four Bar Machine

Control System Toolbox Function This section uses the Control System
Toolbox function minreal and assumes that this toolbox is installed on your
system. Refer to the Control System Toolbox user’s guide for more about
this function and state-space analysis.

Linearizing a closed-loop system is more complex than open-topology analysis.
Each closed loop in the machine imposes implicit constraints that render some
of the degrees of freedom (DoFs) dependent. Linearization of such a system
must recognize that not all the DoFs are independent. A straightforward
implementation of the linmod command results in redundant system states.
You can eliminate these with the minreal function, which finds the minimal
state space needed to represent your linearized model. To ensure that
minreal produces a nonnull state space, you must linearize a closed-loop
system with at least one input u and one output y.

mech_four_bar_lin illustrates this reduction of independent DoFs: of the
four revolute joints, only one is an independent DoF, which can be taken as
any one of the revolutes. This model defines workspace variables in order to
configure the initial geometry of lengths and angles (expressed in the model in
meters and radians, respectively). Run the model in Forward Dynamics mode.

8-40

http://www.mathworks.com/products/control/
http://www.mathworks.com/access/helpdesk/help/toolbox/control/control.shtml
http://www.mathworks.com/access/helpdesk/help/toolbox/control/ref/minreal.shtml

Linearizing Mechanical Models

Consider a strategy to linearize the model about the four bar’s (stable) natural
equilibrium. You first find the natural equilibrium configuration, which is
best accomplished by analyzing the loop constraints, making a guess, and
then using the trim command to determine the equilibrium exactly. After
choosing a system input and output, you then linearize the system.

Chapter 2, “Building and Visualizing Simple Machines” presents this system
in detail, in the section “Four Bar Mechanism” on page 2-36. The preceding
sections of this chapter, “Inverse Dynamics Mode with a Double Pendulum” on
page 8-8 and “Constrained Trimming of a Four Bar Machine” on page 8-26,
discuss the inverse dynamics and trimming of the four bar system.

Analyzing the Four Bar Geometry and Closed-Loop Constraint
You can determine the constraints and independent DoFs of the four bar with
geometric and trigonometric identities applied to its quadrilateral shape. The
lengths of the bars are l1, l2, and l3, with the fixed base having length l4.

8-41

8 Analyzing Motion

The four joint angles satisfy α + β + γ + δ = 2π. Imagine cutting the
quadrilateral diagonally from the α to the γ vertices, then from the β to the
δ vertices. The law of cosines applied to these diagonals and the triangles
so formed results in two constraints:

l1
2 + l2

2 - 2l1l2cosγ = l3
2 + l4

2 - 2l3l4cosα

l2
2 + l3

2 - 2l2l3cosβ = l1
2 + l4

2 - 2l1l4cosδ

The four angles are thus subject to three constraints. Choose α (the crank
angle) as the independent DoF. You can determine β, γ, and δ from α by
inverting the constraints.

Making an Equilibrium Guess
First guess the natural equilibrium. An obvious guess for the natural
equilibrium is for the crank (Bar 3) to point straight down, α = -90o.

1 Use the quadrilateral constraints to find

β = 310.1o, γ = 60.3o, and δ = 79.6o

2 Redefine the workspace angles to these values (converted to radians).

alpha = -90*pi/180; beta = 313.2*pi/180; gamma = 60.3*pi/180;
delta = 76.5*pi/180;
beta2 = pi - gamma - delta; delta2 = pi - delta;

3 Update the diagram and run the model again. This configuration is not the
natural equilibrium, but it is close.

8-42

Linearizing Mechanical Models

Determining the Natural Equilibrium with trim
Now find the natural equilibrium exactly by trimming the four bar in a
manner similar to “Constrained Trimming of a Four Bar Machine” on page
8-26, but without external torque actuation. Revolute1 is already manually
configured to be the cut joint in the closed loop, ensuring the DoF represented
by Revolute4 is not eliminated from state space when the loop is cut.

1 Set the analysis mode to Trimming. SimMechanics inserts a subsystem and
an output block that outputs a four-component signal representing the
mechanical constraints resulting from the closed loop.

2 Use mech_stateVectorMgr to obtain the system’s state vector:

StateManager = ...
mech_stateVectorMgr('mech_four_bar_lin/Ground_2');

StateManager.StateNames
ans =

'mech_four_bar_lin/Revolute2:R1:Position'
'mech_four_bar_lin/Revolute3:R1:Position'
'mech_four_bar_lin/Revolute4:R1:Position'
'mech_four_bar_lin/Revolute2:R1:Velocity'
'mech_four_bar_lin/Revolute3:R1:Velocity'
'mech_four_bar_lin/Revolute4:R1:Velocity'

Revolute1 is the cut joint and is missing from the list. States 1, 2, and 3 are
the revolute 2, 3, and 4 angles, respectively; while states 4, 5, and 6 are the
revolute 2, 3, and 4 angular velocities, respectively.

3 Set up the necessary trimming vectors:

x0 = [0;0;0;0;0;0]; ix = [];
u0 = []; iu = [];

y0 = [0;0;0;0];
iy = [1;2;3;4];
dx0 = [0;0;0;0;0;0];
idx = [3;6];

The x0 vector tells the trim command to start its search for the equilibrium
with the four bar in its initial configuration (the equilibrium guess you
entered into the workspace previously) and with zero angular velocities.

8-43

8 Analyzing Motion

The index vector ix sets the states that, in the actual equilibrium, should
keep the values specified in x0. Here there are none.

The u0 and iu vectors specify system inputs, but there are none.

The y0 vector sets the initial values of the constraint outputs to zero. The
index vector iy requires that the constraint outputs at equilibrium be
equal to their initial values (0). This ensures that the solution satisfies
the mechanical constraints.

The dx0 vector specifies the initial state derivatives. The initial derivatives
of the angles (i.e., the angular velocities) and of the angular velocities (i.e.,
the angular accelerations) are set to zero. The index vector idx specifies
that the velocity and acceleration of Revolute4 in the natural equilibrium
must vanish. It is not necessary to constrain the derivatives of the other
states because the system has only one independent DoF.

4 Now trim the system:

[x,u,y,dx] = ...
trim('mech_four_bar_lin',x0,u0,y0,ix,iu,iy,dx0,idx);

The u vector is empty. The components of y and dx vanish, within
tolerances, indicating that in equilibrium, respectively, the mechanical
constraints are satisfied and the state derivatives vanish. The last three
components of x vanish, indicating zero angular velocities at equilibrium.
The first three components of x represent the natural equilibrium angles
(in radians), measured as deviations from the initial configuration. The
Revolute4 angle is -0.2395 rad = -13.7o from the starting point.

From x, you can calculate all the angle values. The natural equilibrium is
αeq = -90o - 13.7o = -103.7o, βeq = 310.1o + 13.0o = 323.1o, γeq = 60.3o + 2.5o =
62.8o, and δeq = 360o - αeq - βeq - γeq = 74.7o.

Linearizing the Model at the Natural Equilibrium
You can now linearize the system at this trim point.

1 Reset the angles in your workspace to the natural equilibrium point:

alpha = alpha + x(3); beta = beta + x(2); gamma = gamma + x(1);
delta = 2*pi - alpha - beta - gamma; beta2 = pi - gamma - delta;

8-44

Linearizing Mechanical Models

delta2 = pi - delta;

2 Change the analysis mode back to Forward Dynamics and update the
diagram. Run the model to check that the mechanism indeed does not move.

3 To obtain a nontrivial linearized model, you need at least one input and
one output. Connect a Joint Actuator to Revolute4 to actuate it with a
torque. Then insert Simulink Inport and Outport blocks to input the torque
and measure the angular velocity.

4 Set the input torque to zero and the initial state to the model’s initial
configuration, the natural equilibrium:

u = 0; x = [0;0;0;0;0;0];

5 Linearize the model and use minreal to eliminate the redundant states:

[A,B,C,D] = linmod('mech_four_bar_lin',x,u);
[a,b,c,d] = minreal(A,B,C,D);

leaving two states, α and dα/dt. The component a(2,1) = -80.0873 < 0,
indicating that this natural equilibrium is stable. The linearized motion
is governed by d2α/dt2 = a(2,1)*α.

For More Information About State Space and Linearization
See “Open-Topology Linearization: Double Pendulum” on page 8-34 for more
about the linearized state space representation.

8-45

8 Analyzing Motion

8-46

9

Case Studies

SimMechanics and Simulink form a powerful basis for advanced controls
applications: trimming and linearizing motion, designing controllers,
converting plant and controller models to code, and simulating controller and
plant on dedicated hardware. This chapter is a connected set of case studies
illustrating these methods. For its example system, the studies use the
Stewart platform, a moderately complex, six degree-of-freedom positioning
system.

Overview of Case Studies (p. 9-3) An overview of the case studies of
this chapter and the products you
need to complete them

Introducing the Stewart Platform
(p. 9-7)

An overview of the Stewart platform,
with references

Modeling the Stewart Platform in
SimMechanics (p. 9-13)

Representing the Stewart platform
in SimMechanics

Trimming Through Inverse
Dynamics (p. 9-24)

Trimming a Stewart platform
with the Kinematics mode of
SimMechanics

Designing Controllers (p. 9-35) Combining and analyzing a Stewart
platform controller in Simulink and
mechanical plant in SimMechanics

Simulating with Code (p. 9-69) Generating and using code from a
Stewart platform model

Hardware in the Loop (p. 9-79) Mimicking a Stewart platform with
a hardware controller and generated
code

9 Case Studies

“Modeling a Stewart Platform in CAD” on page 7-46 presents a related
example, converting a Stewart platform computer-aided design assembly
into a SimMechanics model.

9-2

Overview of Case Studies

Overview of Case Studies
This section explains

• “Understanding the Stewart Platform” on page 9-3

• “About the Case Studies” on page 9-3

• “Products Needed for the Case Studies” on page 9-4

The “References” on page 9-5 explain plant analysis and control design for
mechanical systems and how to generate and deploy code for machines and
their controllers.

Understanding the Stewart Platform
The chapter starts with a summary of the Stewart platform and the models.

• “Introducing the Stewart Platform” on page 9-7

• “Modeling the Stewart Platform in SimMechanics” on page 9-13

About the Case Studies
The studies use Stewart platform models and a suite of products to help
you carry out advanced mechanical design and simulation tasks. The tasks
are grouped into the following case studies. In them, you make use of
powerful techniques such as M-file scripts, linked libraries, and configurable
subsystems to simplify the task of defining a complex simulation in Simulink
and SimMechanics.

• “Trimming Through Inverse Dynamics” on page 9-24

• “Designing Controllers” on page 9-35

• “Simulating with Code” on page 9-69

• “Hardware in the Loop” on page 9-79

Structure and Dependencies
The studies begin with motion analysis and control design and end with code
generation and hardware implementation.

9-3

9 Case Studies

The first study is important for a deeper understanding of trimming and might
be useful before attempting the second. The last two studies are connected,
and you should work through the third before attempting the fourth.

Caution SimMechanics code generation is intended for rapid prototyping and
hardware-in-the-loop applications. It is not intended for use as production
code in embedded controller applications.

Case Study Files
Each study has an associated set of demo files and is based on an appropriate
variant model of the Stewart platform.

Saving Intermediate Stages of Work
It is recommended that you complete each case study in one session. If you
cannot, for lack of time, you should periodically save your intermediate results
from your workspace to a MAT-file.

Products Needed for the Case Studies
The case studies of this chapter require MATLAB, Simulink, and
SimMechanics throughout. You should have a good working knowledge of
all three.

In addition, you use several specialized products for specific tasks in each
study. You should have at least a beginner’s level experience with each.

Product Required for Case Study

Control System Toolbox “Trimming Through Inverse
Dynamics” (one part)
“Designing Controllers”

Robust Control Toolbox “Designing Controllers” (last part)

Simulink Control Design “Designing Controllers”

9-4

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/robust/
http://www.mathworks.com/products/simcontrol/

Overview of Case Studies

Product Required for Case Study

Real-Time Workshop “Simulating with Code” and
“Hardware in the Loop”

xPC Target “Hardware in the Loop”

References

[1] Stewart, D., “A platform with six degrees of freedom,” Proc. Inst. Mech.
Eng., Vol. 180, part I(15), 1965-1966, pp. 371-386.

[2] Wilkie, J., M. Johnson, and R. Katebi. Control Engineering: An
Introductory Course. Hampshire, United Kingdom: Palgrave/St. Martin’s
Press, 2002.

[3] Smith, N., and J. Wendlandt, “Creating a Stewart Platform Model
Using SimMechanics,” MATLAB Digest 10(5) (September 2002),
http://www.mathworks.com/company/newsletters/digest/sept02/stewart.html.
This case study includes only the actual leg trajectory in the derivative
term, not the reference trajectory. The derivative term acts in that case like
damping, not as error correction.

[4] Parsons, L., and J. Glass, “Recommendations for Creating Accurate
Linearized Models in Simulink,” MATLAB Digest 12(4) (July 2004),
http://www.mathworks.com/company/newsletters/digest/july04/linmodels.html.

[5] Glover, K., and D. C. McFarlane. “Robust stabilisation of normalised
coprime factor plant descriptions with H-infinity bounded uncertainty.” IEEE
Trans. on Automatic Control, Vol. 34, 1989, pp. 821-830.

[6] Georgiou, T. T., and M. C. Smith. “Optimal robustness in the gap metric.”
IEEE Trans. on Automatic Control, Vol. 35(6), 1990, pp. 673-687.

[7] Janka, R. S., Specification and Design Methodology for Real-Time
Embedded Systems (New York/Berlin: Springer-Verlag, 2002).

[8] Li, Q., and C. Yao, Real-Time Concepts for Embedded Systems (Gilroy,
California: CMP Books, 2003).

9-5

http://www.mathworks.com/products/rtw/
http://www.mathworks.com/products/xpctarget/
http://www.mathworks.com/company/newsletters/digest/sept02/stewart.html
http://www.mathworks.com/company/newsletters/digest/july04/linmodels.html

9 Case Studies

[9] Ledin, J., M. Dickens, and J. Sharp, “AIAA 2003: Single Modeling
Environment for Constructing High-Fidelity Plant and Controller
Models,” American Institute of Aeronautics and Astronautics, 2003,
http://www.mathworks.com/products/xpctarget/technicalliterature.html.

9-6

http://www.mathworks.com/products/xpctarget/technicalliterature.html

Introducing the Stewart Platform

Introducing the Stewart Platform
This section explains

• “Origin and Uses of the Stewart Platform” on page 9-7

• “Characteristics of the Stewart Platform” on page 9-7

• “Counting the Degrees of Freedom” on page 9-8

Origin and Uses of the Stewart Platform
The Stewart platform is a classic design for position and motion control,
originally proposed in 1965 as a flight simulator, and still commonly used for
that purpose [1]. Since then, a wide range of applications have benefited
from the Stewart platform. A few of the industries using this design include
aerospace, automotive, nautical, and machine tool technology. The platform
has been used to simulate flight, model a lunar rover, build bridges, aid in
vehicle maintenance, design crane hoist mechanisms, and position satellite
communication dishes and telescopes, among other tasks.

Characteristics of the Stewart Platform
The Stewart platform has an exceptional range of motion and can be
accurately and easily positioned and oriented. The platform provides a
large amount of rigidity, or stiffness, for a given structural mass, and thus
provides significant positional certainty. The platform model is moderately
complex, with a large number of mechanical constraints that require a robust
simulation.

Most Stewart platform variants have six linearly actuated legs with varying
combinations of leg-platform connections. The full assembly is a parallel
mechanism consisting of a rigid body top or mobile plate connected to an
immobile base plate and defined by at least three stationary points on the
grounded base connected to the legs.

The Stewart platform used here is connected to the base plate at six points by
universal joints. Each leg has two parts, an upper and a lower, connected by
a cylindrical joint. Each upper leg is connected to the top plate by another
universal joint. Thus the platform has 6*2 + 1 = 13 mobile parts and 6*3 = 18
joints connecting the parts.

9-7

9 Case Studies

Counting the Degrees of Freedom
The standard Stewart platform design has six independent degrees of
freedom (DoFs). The mobile plate, if disconnected from the legs and thus
unconstrained, also has six DoFs. The Stewart platform therefore exactly
reproduces the possible motion of a free plate, but with the added benefit of
stable and precise positioning control.

Here are two ways to count the Stewart platform DoFs.

• “Counting Degrees of Freedom on Bodies in Space” on page 9-8 starts with
the disassembled platform parts as physical bodies in space.

• “Counting Degrees of Freedom as Joint Primitives” on page 9-9 starts with
the platform represented as connected Body and Joint blocks.

Counting Degrees of Freedom on Bodies in Space
Start with the disassembled Stewart platform parts as unconstrained moving
bodies. As you assemble the platform, you constrain the bodies as you connect
them with joints. The base plate is immobile.

This approach is not the way that SimMechanics counts DoFs. See “Counting
Degrees of Freedom as Joint Primitives” on page 9-9.

Bodies with DoFs. Each free body in space has six DoFs. Only after you
attach them to one another with joints are they no longer able to move freely.

Joints as Constraints. Connecting bodies with joints constrains the two
bodies so they can no longer move freely relative to one another.

For example, a universal joint connection allows two rotational DoFs, but
imposes four constraints, three translational (positional) and one rotational.

Assembling the Stewart Platform Parts. Start assembling the Stewart
platform. Each joint attachment simultaneously connects and constrains the
bodies. In all, each leg imposes 12 constraints on itself and the top plate.

• The universals connecting the lower legs to the base plate impose four
constraints:

- Three positional, requiring two points to be collocated

9-8

Introducing the Stewart Platform

- One rotational, preventing the lower leg from rotating about its long axis
(with respect to the immobile base)

• The cylindricals connecting the upper to the lower legs impose four
constraints:

- Two positional, allowing the two legs to slide along the long axis but not
translate in the other two directions

- Two rotational, allowing the upper leg to rotate about the long axis (with
respect to the lower leg) but not rotate about the other two directions

• The universals connecting the top plate to the upper legs impose four
constraints:

- Three positional, requiring two points to be collocated

- One rotational, preventing the upper leg from rotating about its long
axis (with respect to the top plate — not with respect to the lower leg)

Obtaining the Independent DoFs. The Stewart platform has 13 moving
bodies. With no constraints, the disassembled Stewart platform has 13*6 =
78 DoFs.

Assembling the parts imposes 12*6 = 72 constraints. Therefore, the Stewart
platform has 13*6 - 12*6 = 6 independent DoFs.

Counting Degrees of Freedom as Joint Primitives
Start with the Stewart platform as an assembled SimMechanics model.

Bodies Without DoFs. In SimMechanics, a Body carries no DoFs. Instead,
pairs of Bodies are connected by Joints, which express the motions of one
Body relative to another.

Six Grounds represent the base plate. Thirteen Bodies represent the moving
parts.

Joints Primitives as DoFs. Each Joint contains primitives. Translational
and rotational primitives each express one DoF. (These are the only primitive
types used here.) The Stewart platform model contains 18 Joints containing
6*6 = 36 primitives, of which 30 are rotational and 6 are translational.

9-9

9 Case Studies

• Six Universal joints connecting the lower legs to the base. Each contains
two rotational primitives.

• Six Cylindrical joints connecting the lower to the upper legs. Each contains
a rotational and a translational primitive.

• Six Universal joints connecting the upper legs to the top plate. Each
contains two rotational primitives.

Counting Loops. The Stewart platform legs form six loops, but only five are
independent. You can obtain a topologically equivalent platform by flattening
the top plate and base into lines and counting five loops that have the six
legs as sides:

Cutting the Stewart Platform Joints and Deriving the Tree. To simulate
a machine with closed loops (like the Stewart platform), SimMechanics
replaces it internally with an equivalent machine (the spanning tree on page
Glossary-22) obtained by cutting all the independent loops at one Joint per
loop and replacing the cut Joints with (invisible) equivalent constraints.

Obtain the spanning tree by cutting five of the six upper Universals. This
cutting is just enough to open all loops but not disconnect the machine into
disjoint parts. The tree contains 13 (uncut) Joints constituting 6*(2+2) +
2 = 26 DoFs.

9-10

Introducing the Stewart Platform

Imposing the Cutting Constraints and Deriving the Independent DoFs.
To complete the conversion of the closed-loop machine into an equivalent tree,
impose constraints to replace the cut Joints. There are 20 such constraints.
Each constraint is equivalent to reattaching a cut Joint and analyzes into
five sets of

• Three positional constraints, requiring two points to be collocated

• One rotational constraint, preventing the upper leg from rotating about its
long axis relative to the top plate

Thus reattaching the cut Joints to reassemble the platform leaves 26 - 5*4 =
6 independent DoFs.

Representing the Independent Degrees of Freedom
These six independent DoFs are usually taken to be the six leg lengths. Every
other DoF identified here is now dependent on these six lengths. Each time
you change a length, the universals connecting the legs to the base and top
plate rotate, the top plate shifts and rotates, and the upper legs rotate about
their long axes.

Alternatively and equivalently, you can take the six independent DoFs to be
the six DoFs of the top, mobile plate. By connecting the top plate, you replace
the six independent DoFs of an unconstrained plate with six DoFs under the
precise and stable control of the six-leg positioning system.

The six DoFs of the connected top plate are not in addition to the leg-length
DoFs. They are just an equivalent, replacement description of the same six
independent DoFs. The whole platform system, once fully connected, always
has exactly six independent degrees of freedom.

For More About Bodies, Joints, Degrees of Freedom, and
Topology
Chapter 4, “Modeling Mechanical Systems” shows how Bodies and Joints in
SimMechanics represent bodies and DoFs. See especially these sections:

• “Modeling Joints” on page 4-20

• “Checking Model Validity” on page 4-74

9-11

9 Case Studies

Chapter 5, “Running Mechanical Models” explains the steps SimMechanics
executes to analyze and simulate a machine. See especially these sections:

• “How SimMechanics Works” on page 5-15

• “Troubleshooting Simulation Errors” on page 5-17

9-12

Modeling the Stewart Platform in SimMechanics

Modeling the Stewart Platform in SimMechanics
This section explains the essential details of modeling the Stewart platform
with SimMechanics.

• “Modeling the Physical Plant” on page 9-13

• “Modeling Controllers” on page 9-15

• “Initializing the Stewart Platform in SimMechanics” on page 9-18

• “Identifying the Simulink and Mechanical States” on page 9-21

• “Visualizing the Stewart Platform Motion” on page 9-23

To understand these points, use any top-level model from the case studies of
this chapter, except the models of “Trimming Through Inverse Dynamics”
on page 9-24. These are different because they lack a controller subsystem
and consist of a plant model alone.

The control design model, mech_stewart_control, is this section’s example.

Modeling the Physical Plant
In three of the case studies, a larger control system model contains a Plant
subsystem that incorporates the platform.

9-13

9 Case Studies

Viewing the Platform Model
The Plant subsystem models the Stewart platform’s moving parts, the legs
and top plate. Open this subsystem.

Stewart Platform Model in SimMechanics (Controls Study)

Each of the legs is an instance of a library block located in another library
model, mech_stewartplatform_leg or mech_stewart_control_equil_leg.

1 Select one of the leg subsystems and right-click. Select Link Options,
then Go To Library Block, to open this library.

2 Open the masked library block, Leg Subsystem, and the individual Body
and Joint blocks that make up a whole leg.

3 Now close the blocks, subsystems, and linked libraries and return to the
top-level model.

9-14

Modeling the Stewart Platform in SimMechanics

Modeling Controllers
Except in the “Trimming Through Inverse Dynamics” on page 9-24 study,
the Stewart platform models contain controllers imposing actuating forces
that guide the platform’s motion to follow as closely as possible a nominal or
reference trajectory. Implementing a controller requires computing the motion
errors, the difference of the reference and actual motions of the platform. All
the case study models use proportional-integral-derivative (PID) control.

Generating the Reference Trajectory
Each model controller requires a reference trajectory.

1 Open the Leg Reference Trajectory subsystem.

This set of blocks generates the set of six leg lengths, as functions of time,
corresponding to a desired trajectory for the top plate.

2 Open the subsystem called Top Plate Reference. This set of blocks
generates a reference trajectory in terms of linear position and three
orientation angles, as a function of time. The workspace variable freq sets
the frequency of the reference motion.

Stewart Platform Reference Trajectory Subsystem (Controls Study)

• The reference trajectory provided uses sinusoidal functions of time to
define the rotational and translational degrees of freedom.

• If you want, you can design and implement another reference trajectory
of your choosing and replace this sub-subsystem.

9-15

9 Case Studies

Whatever comes out of Top Plate Reference, the subsystem Leg Reference
Trajectory assumes the translational position/three-angle form for the top
plate. The rest of the Leg Reference Trajectory subsystem transforms these
six degrees of freedom (DoFs) into the equivalent set of six DoFs expressed
as the lengths of the six platform legs. The reference trajectory output of the
subsystem is a six-vector of these leg lengths.

Finding the Motion Error
The actuating force on leg r is a function of the motion error. The error
requires finding the instantaneous length of each leg from the positions of
that leg’s top and bottom connection points.

Defining the Length of a Stewart Platform Leg

The motion error is the difference of the desired or reference length of the leg
and its instantaneous or actual length:

9-16

Modeling the Stewart Platform in SimMechanics

Error reference length of leg actual length of leg= = −Er

 = − ⋅ −L t Rr r rtraj, t, b,() |() |p p

The reference length Ltraj(t) is given as a function of time by the output of
the Leg Reference Trajectory subsystem. The vectors p, pt,r, and pb,r are
defined in the preceding figure. The orthogonal rotation matrix R specifies
the orientation of the top plate with respect to the bottom.

The Standard PID Controller and Its Control Law
All the Stewart platform models use a simple PID controller and Joint Sensor
blocks to measure motion. The simplest implementation of trajectory control
is to apply forces to the plant proportional to the motion error. PID feedback
is a common form of linear control.

A PID control law is a linear combination of a variable detected by a sensor, its
time integral, and its first derivative. This Stewart platform’s PID controller
uses the leg position errors Er and their integrals and velocities. The control
law for each leg r has the form:

F E E Eact, 0

t
r p r i r d rK K dt K d dt= + +∫ ()

The controller applies the actuating force Fact,r along the leg.

• If Er is positive, the leg is too short, and Fact,r is positive (expansive).

• If Er is negative, the leg is too long, and Fact,r is negative (compressive).

• If Er is zero, the leg has exactly the desired length, and Fact,r is zero.

The real, nonnegative Kp, Ki, and Kd are, respectively, the proportional,
integral, and derivative gains that modulate the feedback sensor signals in
the control law:

• The first term is proportional to the instantaneous leg position error, or
deviation from reference.

• The second term is proportional to the integral of the leg position error.

• The third term is proportional to the derivative of the leg position error.

9-17

9 Case Studies

The result is Fact,r, the actuator force (input) applied by the controller to the
legs. The proportional, integral, and derivative terms tend to make the legs’
top attachment points pt,r follow the reference trajectories by suppressing
the motion error.

For More About Controllers
The case study, “Designing Controllers” on page 9-35, discusses controlling
platform motion in greater detail. In that study, you also use an H-infinity
controller, as well as use transfer functions to take motion derivatives.

In addition, consult “References” on page 9-5.

Initializing the Stewart Platform in SimMechanics
When creating the physical components of the Stewart platform model with
SimMechanics and the control blocks with Simulink, you must define the
geometry of its initial state and the mass parameters of the Stewart platform
bodies. Although each case study in this chapter uses a variant model, all
initialize the platform and controller configuration in a common way.

Geometric, mass, dynamical, and controller information is specified in the
block dialogs by referencing variables in your MATLAB workspace. An M-file
script accompanies the Stewart platform models and sets these values.

Running this script configures the blocks in their starting geometric state,
with the correct mass properties for the bodies. When you open it, each model
uses the same initialization M-file as a pre-load function. To see this setting,

1 Go to the File menu and select Model Properties.

2 Then in the dialog, select the Callbacks tab and find the Model pre-load
function field.

9-18

Modeling the Stewart Platform in SimMechanics

Stewart Platform Initialization M-File

File Purpose

mech_stewart_studies_setup M-file script to fill the workspace with geometric, dynamical,
and controller data.

inertiaCylinder M-file function called by mech_stewart_studies_setup.
Computes the principal inertias of a solid cylinder.

Body and Joint Geometric Configuration
The script first defines basic angular unit conversions and axes. The World
coordinate system (CS) is located at the center of the immobile base plate. The
connection points on the base and top plate are defined with respect to World.
These definitions include the offset angle of 60 degrees between the base
and top plates, the radii of both the base and top plates, the initial position
height of the top plate, and the vectors pointing along the legs. The array of
top points is permuted so that the same index represents the top and bottom
connection points for the same leg.

The script calculates the revolute and cylindrical axes used in the joint blocks
of the leg subsystems. There are two revolute axes for each Universal joint
that connects an upper leg to the top plate, one cylindrical and one revolute
axis for the linear motion of the Cylindrical joint connecting upper and lower
legs, and two revolute axes for each Universal block that connects a lower leg
to the base plate. The script then configures all 13 moving bodies by defining
coordinate systems at the center of gravity (CG) of each.

The top plate’s home configuration is symmetric equilibrium: flat, with equal
leg lengths specified by the workspace vector leg_length.

Body Mass Properties
The script defines the mass properties of all bodies. These comprise the
inertia tensors and masses for the top plate, the bottom plate, and the legs.
The mass properties calculation assumes that the platform is made with steel.
The script calls the function inertiaCylinder to calculate the inertia tensors
and masses of the legs and the top and base plates, given the material density,
the length and inner and outer radii of the leg cylinders, and the thicknesses
and radii of the top and base plates.

9-19

9 Case Studies

Motion Constants, Controller Parameters, and Initial Condition
In its final steps, the script defines motion and control constants as workspace
variables: motion frequency, derivative filtering cutoff, leg actuator force
saturation, and controller gains. Each case study model uses some or all of
these constants, which you can change as desired.

Real force actuators are saturate at a specific force level. The Force Saturation
block limits the actuating force to the value of the workspace variable
force_act_max.

The integral (I) part of the PID controller exhibits an extended response time
whose overall effect is controlled by the ratio of Ki to Kp. The Integrator for
the I part has a nonzero Initial condition field, specified by the workspace
variable initCondI, adjustable to compensate for initial transient behavior.
The script initializes its value to

(upper_leg_mass+lower_leg_mass+(top_mass*1.3/6))*9.81/Ki

corresponding to the leg forces in symmetric equilibrium.

Motion and Filtering Constants

Dynamical
Feature

Workspace
Variable

Associated
Natural
Frequency

Associated
Time Scale

Top plate motion freq = π rad/s freq/2π = 0.5 Hz 2π/freq = 2 s

Filtered
derivative cutoff

A = 100*freq =
100π rad/s

A/2π = 50 Hz 2π/A = 0.02 s

PID Controller Constants

Dynamical Constant Workspace Variable

Force saturation force_act_max = 3e5 newtons (N)

Integral (I) gain Ki = 1e4 (newtons/meter/second) (N/m-s)

9-20

Modeling the Stewart Platform in SimMechanics

PID Controller Constants (Continued)

Dynamical Constant Workspace Variable

Proportional (P) gain Kp = 2e6 newtons/meter (N/m)

Derivative (D) gain Kd = 4.5e4 newtons-seconds/meter (N-s/m)

Identifying the Simulink and Mechanical States
For the purposes of SimMechanics motion analysis, you need to know the
model’s Simulink and mechanical states. These are distinct from the system’s
degrees of freedom (DoFs) and depend on the analysis mode you choose.

Pure Simulink States
If you use a controller or other subsystem made up of pure Simulink blocks
with your Stewart platform, your model might contain Simulink states. For
example, Integrator and Transfer Fcn blocks each have an associated state,
and State-Space blocks can have many.

The default Stewart platform controller is a PID subsystem, which integrates
six feedback signals and thus has six Simulink states. In the “Designing
Controllers” on page 9-35 study, you can also choose to use the filtered
derivative, which has 12 transfer functions and thus adds 12 Simulink states.

Mechanical States in Forward Dynamics Mode
A mechanical system modeled in SimMechanics with Joint blocks contains
mechanical states distinct from Simulink states that include both joint
position and velocity. In Forward Dynamics mode, the Stewart platform
contains 52 tree states, of which 12 are independent.

The joints and their related DoFs are discussed in “Counting the Degrees of
Freedom” on page 9-8.

Joint Primitives and States. Each Joint consists of one or more primitives.
The position and velocity of a joint primitive each have a state. The Stewart
platform has 36 joint primitives and thus potentially 72 states.

9-21

9 Case Studies

Cutting Joints and Obtaining the Tree States. Because the Stewart
platform has closed topology, SimMechanics cuts five of the Joints to arrive
at an equivalent open-topology or tree machine. These Joints are replaced
internally by equivalent cutting constraints.

Five Universals and 5*2*2 = 20 joint primitives are eliminated this way. The
equivalent open machine thus has 72 - 20 = 52 tree states.

Counting the Cutting Constraints. Not all these states are independent.
There are 40 equivalent constraints that replace the cut Joints.

• Each cut Universal imposes one rotational and three position constraints.

• Each constraint also constrains the corresponding velocity.

• There are five cut Joints.

Thus there are 5*2*4 = 40 invisible constraints generated by the cutting.

Finding the Independent States. Thus the Stewart platform model has 52
- 40 = 12 independent mechanical states, corresponding to the six independent
DoFs and their velocities.

Mechanical States in Trimming and Kinematics Modes
You can also analyze the Stewart platform’s motion in inverse dynamics and
locate steady-state operating points.

• Because the Stewart platform is a closed-loop system, you must simulate
its inverse dynamics in the Kinematics mode.

• You can find operating points in the Trimming mode with the Simulink
trim command.

In both the inverse dynamics and trimming cases, the Simulink states
associated with the SimMechanics joint primitives are not the DoFs, but the
(invisible) joint-cutting constraints that reduce the tree states to independent
states. The state values measure how well the constraints are satisfied. A
zero value means a constraint is satisfied perfectly.

In the mechanical part of the Stewart platform model, there are 52 tree states
and 12 independent states. Thus SimMechanics counts 52 - 12 = 40 cutting

9-22

Modeling the Stewart Platform in SimMechanics

constraints. In the Kinematics and Trimming modes, these 40 constraints are
the mechanical states.

Open Topology and Inverse Dynamics Mode. If the Stewart platform
had an open topology, you would simulate its inverse dynamics in Inverse
Dynamics mode instead. However, there would be no closed loops, and
SimMechanics would not cut any Joints. With no cutting constraints, an open
topology machine has no states in Inverse Dynamics or Trimming mode.

For More About Mechanical States, Cutting Loops, and Analysis
Modes
Learn more about SimMechanics states and loops in Chapter 4, “Modeling
Mechanical Systems”:

• “Cutting Closed Loops” on page 4-36

• “Checking Model Validity” on page 4-74

Consult the mech_stateVectorMgr command reference as well.

For more about analysis modes, see

• “Simulating and Analyzing Mechanical Motion” on page 1-20.

• Chapter 8, “Analyzing Motion”.

Visualizing the Stewart Platform Motion
To view mechanical animation, consult “Starting SimMechanics Visualization”
on page 6-2.

With the SimMechanics visualization window open, you can view the platform
motion from different perspectives. View the platform in the xy-plane, from
above. Then switch the view to the xz- or yz-plane.

The initial state of motion specified by the reference trajectory is slightly
different from the home configuration and generates an initial transient.

9-23

9 Case Studies

Trimming Through Inverse Dynamics

Note This study requires Control System Toolbox at an optional step,
“Finding the Minimal Realization of the Linearized Model” on page 9-32.

This case study finds a Stewart platform steady state with the Kinematics
mode of SimMechanics. You specify motions and determine the forces and
torques to produce those motions (the inverse dynamics problem). If you are
not familiar with implementing inverse dynamics in SimMechanics, work
through the “Finding Forces from Motions” on page 8-7 before attempting
this case study.

Use the Inverse Dynamics and Kinematics modes for inverse-dynamic
analysis of open- and closed-topology systems, respectively. The Stewart
platform has a closed topology and thus requires the Kinematics mode to
solve inverse dynamics. Once you have an operating point, you can linearize
the motion.

• “What Is Trimming?” on page 9-24

• “Ways to Find an Operating Point” on page 9-25

• “Trimming in the Kinematics Mode” on page 9-25

• “Linearizing the Platform at the Operating Point” on page 9-29

• “Further Suggestions for Inverse Dynamics Trimming” on page 9-32

What Is Trimming?
Trimming a system means locating a configuration of its states with certain
prior conditions imposed on the states and possibly their derivatives. In a
mechanical context, it means imposing conditions on certain positions and
velocities, then determining the remaining positions and velocities such that
the entire state of the machine is consistent. A by-product of mechanical
trimming is determination of the forces/torques necessary to produce the
specified motion. These motion states constitute a trim or operating point.
Trimming problems can have one solution, more than one, or none.

9-24

http://www.mathworks.com/products/control/

Trimming Through Inverse Dynamics

Pure inverse dynamics imposes prior motions on all degrees of freedom.
Then all the states are determined. (The consistency of the motions is not
guaranteed, but must be checked.) Only the forces/torques remain to be found.

Ways to Find an Operating Point
To find an operating point or steady state for a SimMechanics model,

• Use the trim command in Simulink. See “Trimming Mechanical Models”
on page 8-18.

• Use the more powerful techniques provided by Control System Toolbox and
Simulink Control Design. See “Designing Controllers” on page 9-35.

• Use the inverse dynamics modes of SimMechanics. You can manipulate the
mechanical states of your model directly with motion actuation rather than
manipulate them through Simulink.

Trimming in the Kinematics Mode
Here are the files needed for this case study. The models also call the
initialization M-files. Open the first model.

File Purpose

mech_stewart_control_equil Kinematics model for
determining Stewart platform
force equilibrium

mech_stewart_control_equil_leg Library model of Stewart
platform leg for kinematic
analysis

mech_stewart_control_plant Forward dynamics model for
linearizing the Stewart platform

mech_stewartplatform_leg Library model of Stewart
platform leg for forward
dynamic analysis

9-25

9 Case Studies

Simulation Settings for Inverse Dynamics
The mech_stewart_control_equil model has some preset nondefault settings.

Configuration Parameters

Setting Value

Solver > Simulation time > Stop
time

0.005 seconds

Data Import/Export > Save to
workspace

Time and States selected >
tout and xout

9-26

Trimming Through Inverse Dynamics

Configuration Parameters (Continued)

Setting Value

SimMechanics > Diagnostics Mark automatically cut joints
selected

SimMechanics > Visualization Display machines after
updating diagram and
Show animation during
simulation selected

Machine Environment

Setting Value

Parameters > Analysis mode Kinematics

Parameters > Machine
Dimensionality

3D Only

Constraints > Constraint solver type Machine Precision

Constraints > Use robust singularity
handling

Selected

Specifying the Motion
The six Stewart platform legs are instances of a basic leg saved in the
mech_stewart_control_equil_leg library. It takes as inputs the motion
actuation signals that specify position and velocity as a function of time. The
position signals specify the platform’s motion relative to the initial geometric
configuration.

9-27

9 Case Studies

In mech_stewart_control_equil, the Motion subsystem specifies motion as
trivial: zeroes for all six leg positions and velocities. That is, the model holds
the platform still in its initial state.

Measuring the Steady-State Forces
Each Stewart platform leg outputs the computed leg force needed to maintain
the motion specified by the motion actuation. These six measured forces are
directed to your MATLAB workspace by the To Workspace block.

1 Open the To Workspace dialog.

The output forces are stored in the vector variable Forces. The block
retains the force vector only from the last time step.

2 Close the To Workspace dialog.

Running the Model and Obtaining the Outputs
Now run mech_stewart_control_equil.

1 Click Start and wait for the simulation to finish.

2 In your workspace, locate tout and xout. These are the time steps and the
corresponding state values, respectively.

In the Inverse Dynamics mode, there are 40 mechanical states counted by
Simulink, associated with the mechanical constraints. Consult “Identifying
the Simulink and Mechanical States” on page 9-21.

9-28

Trimming Through Inverse Dynamics

3 Locate Forces in the workspace. These are the six force values along each
leg to maintain the platform still against falling in gravity. The values are
positive (expansive) along the legs.

Linearizing the Platform at the Operating Point
Knowing the steady-state forces needed to keep the platform still, you now
linearize another version of the model, mech_stewart_control_plant. It has
settings similar to mech_stewart_control_equil, except that:

• The Analysis mode is set to Forward Dynamics.

• The simulation time is 10 seconds.

• Time and Output, tout and yout, respectively, are saved to workspace.

9-29

9 Case Studies

Open the mech_stewart_control_plant model.

• The six legs are instances of the mech_stewartplatform_leg library. This
leg takes force as an input and outputs position and velocity, as appropriate
for forward dynamics.

• The standard model input variable is u. The force vector signal is a model
input.

• The position and velocity vector signals are model outputs. The Data
Import/Export output variable is yout and will appear in your workspace
assigned with data after you simulate.

9-30

Trimming Through Inverse Dynamics

Close the model.

Linearizing the Forward Dynamics Model
You can simulate the mech_stewart_control_plant model without opening it.

1 At the command line, enter

nomForces = Forces'; % Transpose the force vector

2 Linearize the model by entering

[A,B,C,D] = ...
linmod('mech_stewart_control_plant',[],nomForces);

The arguments are, in order,

• Model name

• Model state vector (not used)

• Model input vector u = nomForces

These (unreduced) output matrices are the standard state-space
representation of a linearized model. The space is defined by x, u, and y, the
state, input, and output vectors, respectively.

d dtx x u
y x u

= ⋅ + ⋅
= ⋅ + ⋅

A B
C D

9-31

9 Case Studies

There are 52 states, 6 inputs, and 12 outputs. Thus A, B, C, D have
dimensions 52-by-52, 52-by-6, 12-by-52, and 12-by-6, respectively. Not all
these matrix entries are independent.

Finding the Minimal Realization of the Linearized Model

Note This step requires Control System Toolbox.

Of the 52 mechanical states, the Stewart platform has only 12 independent
states, corresponding to six degrees of freedom (DoFs). Each DoF corresponds
to one position and one velocity.

To eliminate the redundant states, enter

[a,b,c,d] = ...
minreal(A,B,C,D);

40 states removed.

at the command line. The a, b, c, d matrices are reduced in size to 12-by-12,
12-by-6, 12-by-12, 12-by-6, respectively.

For More About Linearization and State Space
See “Open-Topology Linearization: Double Pendulum” on page 8-34 and the
Simulink documentation.

Further Suggestions for Inverse Dynamics Trimming
“Trimming in the Kinematics Mode” on page 9-25 and “Linearizing the
Platform at the Operating Point” on page 9-29 present the simplest possible
trimming scenario:

• All six degrees of freedom (DoFs) are determined by prior specification of
positions and velocities. These are the inputs to the problem. The outputs
are the forces necessary to maintain the specified motion. The simulation
solves a pure inverse dynamics problem.

• The actual motion actuation signals require the platform to hold still
relative to its initial geometric configuration.

9-32

http://www.mathworks.com/products/control/

Trimming Through Inverse Dynamics

General Trimming Conditions: Mixed Dynamics
In a more typical trimming problem, you specify some of the DoFs by motion
actuation and leave the others free to respond to forces/torques. Such a
scenario is a mixed dynamics problem. In SimMechanics, you can solve such
problems in

• Forward Dynamics mode, where the tree states (DoFs corresponding to
uncut Joints) are the mechanical states

• Kinematics mode (closed topology), where the cutting constraints that
replace the cut Joints constitute the mechanical states

• Inverse Dynamics (open topology), where there are no mechanical states

Complementarity of Inverse and Forward Dynamics

Actuate DoF with Sense on DoF

Forces/torques Motions

Motions Forces/torques

If you want to solve such a problem for the Stewart platform, you need to

• Use a library leg with

- Force input

- Motion output

for each leg simulated in forward dynamics. You actuate it with a force and
measure its motion. Use the mech_stewartplatform_leg block library.

• Use a library leg with

- Motion input

- Force output

for each leg simulated in inverse dynamics. You actuate it with a motion and
measure the corresponding force. Use the mech_stewart_control_equil_leg
block library.

9-33

9 Case Studies

Using the Operating Point to Linearize a Model
The steady-state outputs are in turn the inputs for linearization.

Complementarity of Trimming and Linearization

Trimming Output Becomes... ...Linearization Input

Measured motions become... ...Motion actuation signals

Measured forces/torques become... ...Force/torque actuation signals

To carry out a linearization of your system,

1 Create a variant model in Forward Dynamics mode that takes

• The steady-state forces as linearization input force actuation

• The steady-state motions as linearization input motion actuation

2 Linearize with linmod.

linmod('forward_dynamics_model_to_linearize', state, input)

This command can feed model inputs into the linearized simulation as a
command argument. See the command reference for more details.

9-34

Designing Controllers

Designing Controllers

Note This case study assumes some knowledge of control systems. In addition
to Simulink and SimMechanics, parts of the study use these products:

• Control System Toolbox

• Simulink Control Design

• Robust Control Toolbox

You should have some experience with these tools before proceeding.

To understand trimming better, work through “Trimming Through Inverse
Dynamics” on page 9-24.

A classic engineering problem is the design of controllers for a physical
system, the plant [2]. SimMechanics can model a complex mechanical system
and helps you design and implement a control system for the plant, in
conjunction with Simulink and related control design products.

In this study, you use SimMechanics to model the plant and analyze and
synthesize controllers. You explore a basic challenge of control design, the
tradeoff between responsiveness and stability, by implementing first a simple
controller, then a more complex and robust one [3].

Case Study Tasks
The first set of tasks implements the Stewart platform control system with
the standard preoptimized PID controller.

• “A First Look at the Stewart Platform Control Model” on page 9-38 gives
you an overview of the Stewart platform and controller model used in this
study.

• “Improper and Biproper PID Controllers” on page 9-40 shows how the
simple proportional-integral-derivative (PID) controller works and how to
make it more realistic with a filtered derivative.

9-35

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/robust/

9 Case Studies

• “Analyzing the PID Controller Response” on page 9-44 shows you how to
exploit classical control techniques to analyze the PID controller.

In the next group of tasks, you create and optimize a new PID controller.

• “Designing a New PID Controller” on page 9-47 starts the creation of a
new PID controller ab initio.

• “Trimming and Linearizing the Platform Motion” on page 9-50 locates a
steady state and linearizes the platform’s motion about this equilibrium.

• “Improving the New PID Controller” on page 9-56 uses the linearized
platform dynamics to optimize the new PID controller.

The final task goes beyond PID control by introducing multivariable synthesis.

• “A Robust, Multichannel Controller” on page 9-63 designs a more complex
and realistic multivariable controller and compares its performance with
the new PID controller.

The final section, “For More About Designing Controllers” on page 9-67,
summarizes additional control design tasks and goals.

Case Study Files
This case study uses these files, in addition to the initialization M-files.

File Purpose

mech_stewart_control Main model

mech_stewart_control_deriv Configurable subsystem:
Derivative block or transfer
function (filtered)

mech_stewart_controllers Configurable subsystem: Null, PID,
or H-infinity controller

mech_stewartplatform_leg Library model of Stewart platform
leg; used six times in the Plant
subsystem of the main model

9-36

Designing Controllers

Nature of the Control Problem
The motion of an uncontrolled physical system is represented by its position
and velocity variables arranged into a state vector X. The dynamics of the
system is described by a force law:

d dtX f X= ()

Introducing control means introducing sensors and actuators that modify the
system’s otherwise natural motion. The actuators impose artificial forces —
collectively, the inputs U — on the system, while the sensors detect motions
and report outputs Y. The dynamics of the controlled system are modified:

d dtX f X U

Y X U

= ()
= ()

,

,g

The U and Y are the control variables of the system.

By selecting the proper set of U and Y and a feedback control or compensator
law U = c(Y) that modifies the system’s motion X in a desired way, you impose
control actuator forces for the relevant range of X, U, and Y.

Selecting c is the fundamental problem of control design. The desired
trajectory of X is the reference or nominal trajectory. The difference of the
actual and reference trajectories is the motion error. Finding the actuator
forces needed to produce a desired motion is closely related to the problem of
inverse dynamics. See the case study, “Trimming Through Inverse Dynamics”
on page 9-24.

Control Transfer Function Forms and Units
The controller and plant transfer functions are often called C and G,
respectively. The combined controller-plant transfer function forms are the
open-loop CG and the closed-loop CG/(1+CG).

9-37

9 Case Studies

Controller and plant response magnitudes are measured in decibels (dB).

A First Look at the Stewart Platform Control Model
Open the mech_stewart_control model.

Stewart Platform Control Design Model

The green controller subsystem is linked to an enabled subsystem in a related
library model, mech_stewart_controllers. The initial configuration is to the
Null Controller, which imposes no forces at all on the platform, the blue
subsystem labeled Plant. Open the Null Controller subsystem. This controller
accepts trajectory information, but outputs zero for the imposed force.

Signal logging captures the motion errors. You use this feature later to
analyze controller performance.

Viewing the Controller
To see the controller subsystem library:

1 Right-click the Null Controller block and select Link Options, then Go
To Library Block. The mech_stewart_controllers library opens with the
Template block highlighted.

9-38

Designing Controllers

You can set this enabled subsystem in three ways, and you use all three in
this case study: Null Controller, PID Controller, and H_inf Controller.

2 Open the controller subsystem in each setting to examine its block diagram.

3 Double-click the Template block to see the controller subsystem design.
The three possible subsystem settings are listed in the Template dialog.

Close the library model.

4 You select the subsystem configuration actually used for simulation back in
the original model, mech_stewart_control.

Right-click the Null Controller block and select Block Choice. The three
possible subsystems from the mech_stewart_controllers library are listed,
with Null Controller selected.

Configuring the Dynamics
To see the dynamical settings for the controls study model:

1 Open the Plant subsystem and the orange Machine Environment block. In
the block dialog, locate the Parameters pane. The gravity vector points
in the negative z direction.

Then locate the Constraints pane. The Constraint solver type is
Machine precision, and the Use robust singularity handling check
box is selected. For this model, such a combination is the most robust.

Close the dialog and subsystem.

2 From the Simulation menu, open Configuration Parameters. Locate
the SimMechanics node, Diagnostics panel. In this simulation,
automatically cut joints are marked.

Because the Stewart platform is a closed-loop system, SimMechanics cuts
one joint in each closed loop formed by the two plates and a pair of legs
during the simulation and marked with a red X. See “Counting the Degrees
of Freedom” on page 9-8 and “Identifying the Simulink and Mechanical
States” on page 9-21.

Close the dialog.

9-39

9 Case Studies

Simulating the Stewart Platform Without Controls
First simulate the Stewart platform without any control forces. The platform
moves under the influence of gravity and initial conditions only. The reference
trajectory is irrelevant because it is not used to generate any control forces.

To watch the natural or uncontrolled motion of the Stewart platform:

1 Open the Scope block. The Scope window displays three measurements:

• Position of the top plate CG

• Control errors

• Control forces applied to move the legs

2 Start the model. Track the falling platform by watching the Top Plate
Position graph in the Scope window. Because the controller does nothing in
this version of the model, the control errors and forces are not important.

Improper and Biproper PID Controllers
Now change the model to control the Stewart platform’s motion with the
linear proportional-integral-derivative (PID) feedback system.

The initial controller settings are discussed in “Modeling Controllers” on page
9-15 and “Initializing the Stewart Platform in SimMechanics” on page 9-18.
Here you implement two versions of this controller, improper and biproper.
See “Analyzing the PID Controller Response” on page 9-44 for more.

9-40

Designing Controllers

Switching to the PID Controller Subsystem
Switch the model’s controller subsystem by right-clicking on the (green)
control subsystem block, selecting Block Choice, then PID Controller. The
block name changes from Null Controller to PID Controller. Open it.

Stewart Platform PID Controller Subsystem

This is the PID linear feedback control system, a copy of the original
subsystem contained in the mech_stewart_controllers model library. The
control transfer function has the form Ki/s + Kds + Kp. The control gains Ki,
Kp, and Kd in their respective blocks reference the variables Ki, Kp, Kd defined
in your workspace. Check their initialized values:

Ki, Kp, Kd
Ki = 10000
Kp = 2000000
Kd = 45000

Simulating the Controlled Motion
Simulate the Stewart platform with the PID controller.

1 Open the Scope and start the simulation.

2 Observe the controlled Stewart platform motion. The Scope shows how the
platform initially does not follow the reference trajectory, which starts in
a different position from the platform’s home configuration. The motion
errors and forces on the legs are significant. Observe also that the leg
forces saturate during the initial transient.

9-41

9 Case Studies

The platform moves quickly to synchronize with the reference trajectory,
and the leg forces and motion errors become much smaller.

Stewart Platform Motion and Forces with the PID Controller

Finding the Numerical Derivative of the True and Reference
Trajectories
The PID control law requires the time derivative of both actual and reference
motion. For greater realism, the Stewart platform plant uses a Body Sensor
block to detect only the actual position of the platform, leaving the velocity
to be computed by the controller. Finding the reference and actual velocities
requires taking numerical derivatives of the reference and actual trajectories,
which each consists of the six leg lengths as functions of time.

The model gives you two ways to do this. You can switch the numerical
derivative configurable subsystem to implement either. This block is linked to
the library mech_stewart_control_deriv, which contains the two subsystem
implementations. Right-click the numerical derivative (orange) block and
select Block Choice, then Derivative Block or Filtered Derivative.

• The first choice (improper) uses the Derivative block of Simulink. This
block gives accurate but idealized results. This choice is the default.

9-42

Designing Controllers

• The second choice (biproper) applies a filter of Transfer Fcn blocks in the
Laplace domain before transforming the signals back to the time domain.
This choice is closer to a realistic implementation.

The transfer function has canonical form As/(s+A). The transfer function acts
as a low-frequency bandpass filter to damp out details of the derivative on
time scales shorter than 2π/A. The Transfer Fcn blocks use the workspace
variable A representing A. Its value should be set to about 50 to 100 times
the motion frequency variable freq. Keep the Transfer Fcn numerators and
denominators in their canonical form in terms of A. The initialized value is A
= 100*π.

The transfer function filtered derivative is more realistic, at the cost of
some inaccuracy due to transients. Vary the filtered derivative behavior by
adjusting A in your workspace. The unwanted transient behavior is worse
for smaller A.

Stewart Platform Motion and Forces with PID Controller (Filtered Derivative)

Simulating at Symmetric Equilibrium
The Stewart platform’s home configuration is the symmetric equilibrium of
the top plate. Later in this study, you need to simulate the platform at rest.
If you start the model in this state, the control forces are zero and the top
plate does not move.

9-43

9 Case Studies

Keep the Filtered Derivative option and simulate this static trajectory.

1 Open the Leg Reference Trajectory subsystem. Locate the Trajectory
Switch to the right. Double-click the Switch to the down position.

The reference trajectory now specifies a static reference trajectory: a
platform remaining still with all legs at the same constant length.

2 Close the subsystem and start the simulation. Observe the static platform
in either the Scope, the SimMechanics visualization window, or both.

3 After rerunning the model, reset the Trajectory Switch back to up.

Analyzing the PID Controller Response

Note This section requires Control System Toolbox.

You can learn more about the effect of the PID controller on the Stewart
platform’s motion with two control theory techniques, the s-plane and the
frequency response, both based on the Laplace transform. See “References”
on page 9-5 and the documentation for Control System Toolbox for more
information.

Improper PID Controller: Theory
The PID control law is an output-input relation whose transfer function is

C s K K s K s K s K K s K s s s s sp i d p i d() () (-)(-) s = + + = + + = + −
2

where the gains K are real and nonnegative. The third version is the
zero-pole-gain form.

9-44

http://www.mathworks.com/products/control/
http://www.mathworks.com/access/helpdesk/help/toolbox/control/

Designing Controllers

C(s) is improper, rising without limit for large s and having more zeros
(two) than poles (one, at s = 0). The poles determine controller response for
longer times. The zeros modify how fast the controller approaches the steady
state, especially if a zero approaches and nearly cancels a pole. Obtain the
steady-state by multiplying the transfer function by s, then letting s vanish.

In the PID control law, the Ki gain is the steady-state response. The transient
behavior is most strongly influenced by the highest power of s (the Kd term),
then by the next power of s (the Kp term), and so on. As you vary the gains,
different behaviors emerge.

• If Ki vanishes, the response is all transient, with a null steady state. One
zero coincides with and cancels the pole. The other zero is -Kp/Kd.

• If Kd vanishes, only one zero remains, at s = -Ki/Kp.

• If 4KdKi > Kp
2, the zeros become complex and move off the real s-axis.

• If the gain is more in higher powers of s, the transient response is stronger.

• If the gain is more in the lower powers of s, the transient response is
suppressed and the steady-state response emerges more quickly.

Filtered Derivative and Proper PID Controller: Theory
The simple PID control law, with an ordinary derivative, gives rise to an
improper transfer function C(s). Changing the ordinary derivative to a filtered
derivative softens the behavior of the modified controller c(s) at large s.

c s K K s K As s A K s s A K s A K As s sp i d p i d() () [() ()] (= + + + = + + + + +2 AA

K K A s K K A s K A s Asp d i p i

)

[() ()] () = + + + + +2 2

This function is biproper, having two zeros and two poles, respectively, at

s A

s
K K A

K K A

K K A

K K A
p i

d p

d p

p i

0 0

2
1 1 4

=

= −
+

+()
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

± −
+
+

⎛

⎝
⎜⎜

⎞

⎠
±

, -

⎟⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

K
K K A

i

p i

Recover the improper control law C(s) by letting A → ∞.

9-45

9 Case Studies

PID Controller: Alternative Forms
Because C(s) is improper, Control System Toolbox cannot fully analyze the
simple PID controller response. However, the filtered derivative alternative
c(s) yields results similar to the ordinary derivative. A complete analysis
of c(s) is possible.

With the tf command, define linear, time-invariant (LTI) transfer function
objects for C(s) and c(s), then analyze them with the LTI Viewer.

numC = [Kd Kp Ki]; % Improper numerator
denomC = [1 0]; % Improper denominator
cImproper = tf(numC,denomC) % Improper transfer function

numc = [Kd*A+Kp Kp*A+Ki Ki*A]; % Biproper numerator
denomc = [1 A 0]; % Biproper denominator
cBiproper = tf(numc,denomc) % Biproper transfer function

You can also convert C(s) and c(s) to state-space and zero-pole-gain (ZPK)
forms. The latter is especially useful. Enter help zpk for more details.

zpk(cImproper) % Convert cImproper to zero-pole-gain
zpk(cBiproper) % Convert cBiproper to zero-pole-gain

The helpful zpkdata function extracts the zeros, poles, and gain from a
ZPK-form controller.

PID Controller: LTI Analysis
Now open the LTI Viewer interface by entering ltiview.

1 Select the File menu, then Import. The Import System Data dialog
opens.

In the Import from area, select the Workspace option and, under
Systems in Workspace, both entries, cImproper and cBiproper. Click
OK.

2 Right-click within the LTI Viewer plot window to view the analysis options
under Plot Types and Characteristics.

9-46

Designing Controllers

With c(s), you can use all the LTI Viewer features. Your valid options for
analyzing C(s) are limited.

• The Bode and Bode Magnitude plots show the frequency response C(s)
for imaginary s = jω.

• The Pole/Zero plot shows the location of the poles and zeros of C(s).

3 Display both the C and c systems simultaneously and compare the Bode
and Pole/Zero plots.

The Bode plots are similar for small s (long times). For large s (short
times), C(s) rises without limit, while c(s) levels off and results in better
controller behavior.

The Pole/Zero plots show that C(s) has one pole and c(s) two poles, the
common one being 0. Both transfer functions have two zeros. You can locate
all of these with the pole and zero functions. Note that one zero is almost
identical between C(s) and c(s), while the other is shifted dramatically.
This shift changes and softens the transient behavior of c(s) compared to
C(s) for larger s (short times).

4 Examine the Step and Impulse plots for c(s) as well. These plots indicate
the time behavior of the c(s) controller for stepped and impulsive inputs.

Designing a New PID Controller

Note This section requires Control System Toolbox. Saving intermediate
model versions and workspace values is recommended.

The PID controller gains set by the initialization M-file are preoptimized. The
preceding sections use these gain values as examples.

In the rest of this study, you follow a more realistic scenario where the gains
are not initially known and you use control design tools in the MATLAB
environment to create and optimize a filtered PID controller.

9-47

http://www.mathworks.com/products/control/

9 Case Studies

Making a First Guess for the Controller Gain
Make an initial guess for the integrator (I) gain Ki with dimensional analysis.
Ki has dimensions force/length/time.

• An initial guess for the force is one-sixth the weight of the platform and legs.

• An initial guess for the length is range of vertical motion in the reference
trajectory.

• An initial guess for 1/time is the natural frequency, π/2π = 0.5 Hz.

Thus an initial guess for the integrator gain is

Ki = 0.5*9.8*(top_mass/6+(upper_leg_mass+lower_leg_mass))/0.3

Ki = 7.1680e+003

Making a First Guess for the Controller Force
The initialization M-script sets the workspace variable initCondI to the
value needed to put the platform in a symmetric equilibrium in the initial
state. With a new Ki value, you need to recalibrate this initial condition.

initCondI = ...
(upper_leg_mass+lower_leg_mass+(top_mass*1.3/6))*9.81/Ki

initCondI = 0.6839

Modifying the Null Controller with a Constant Force
Start by turning off the PID controller and applying a constant force to the
platform.

1 Right-click the controller subsystem. Select Block Choice > Null
Controller.

2 Right-click Null Controller again. Select Link Options > Go To
Library Block.

The configurable subsystem library mech_stewart_controller opens.

9-48

Designing Controllers

3 Under Edit, select Unlock Library. Open the Null Controller template
subsystem.

4 In the subsystem, between the Gain and Force (Output) blocks, insert an
Integrator block.

5 Open the Integrator dialog. For Initial condition, enter Ki*initCondI.
Click OK.

6 Close Null Controller. Save and close the mech_stewart_controller library.

7 Back in mech_stewart_control, update the diagram (Ctrl+D).

8 At the command line, enter Ki*initCondI.

This is your first guess for the controller force in one leg: the product of
your PID integrator (I) gain guess and your controller initial state guess.

Simulating the Platform with the Constant Force
Now observe the effect of this constant force on the platform.

1 In the Leg Reference Trajectory subsystem, set the Trajectory Switch
position to down.

2 Open the Scope and start the simulation. The control force is less than the
platform weight. The platform accelerates downward.

9-49

9 Case Studies

Trimming and Linearizing the Platform Motion

Note This section requires Control System Toolbox and Simulink Control
Design. Saving intermediate model versions and workspace values is
recommended.

A critical step in control design is to understand the response of a plant being
controlled to small disturbances in its motion [4]. This step requires

• Trimming the platform, or finding an operating point. This is a time
trajectory satisfying certain prior conditions that you specify.

Here you search for the simple, useful operating point of symmetric
equilibrium, where the platform does not move.

• Linearizing the platform motion about the operating point.

You save the results of the linearization to use in the next section,
“Improving the New PID Controller” on page 9-56.

For More About Trimming
As described in “Trimming Through Inverse Dynamics” on page 9-24, you
can trim SimMechanics models in many ways. Control System Toolbox and
Simulink Control Design provide linear analysis tools more complete and
powerful than what Simulink and SimMechanics alone offer.

Setting Up the Model for Trimming
Now set up the model for trimming. In Trimming mode, the model’s
mechanical states are the 40 constraints that reduce the 52 free (forward
dynamics) states to the 12 independent states.

1 Make sure the model observes these settings.

a Keep the controller subsystem Block Choice set to Null Controller
and the derivative type to Filtered Derivative.

b Keep the Trajectory Switch down (static trajectory) in the Leg Reference
Trajectory subsystem.

2 Reset the SimMechanics analysis mode to trimming.

9-50

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/simcontrol/

Designing Controllers

a Open the Plant subsystem. Double-click the orange Machine
Environment block. Locate the Parameters tab.

b For Analysis mode, change the pull-down menu to Trimming. Click OK
and close the subsystem.

3 Observe the trimming output blocks that have appeared in the upper left of
the main model.

Locating an Operating Point by Trimming
Next, locate an operating point for the Stewart platform plant.

1 Select linearization points in your model as follows. Right-click, in turn,
on each of the Simulink signal lines defining the input and output of the
Plant subsystem:

• Leg Forces (input)

• Pos (output)

On each signal line’s right-click menu, under Linearization Points, select

• Both Input Point and Open Loop for the input line

• Both Output Point and Open Loop for the output line

Choosing the open-loop property for these signals breaks the feedback loop
from controller to plant back to controller. The plant instead takes a given
set of externally imposed controller forces.

2 Then, from the model menu bar, select Tools > Control Design > Linear
Analysis. The Control and Estimation Tools Manager window opens.

9-51

9 Case Studies

3 To the left of the Manager window, select the Operating Points node.
Then, to the right, select the Compute Operating Points panel. Click the
Sync with Model button at the bottom of the panel.

The default subpanel is States. The Steady State check boxes are selected
by default. This choice searches for a plant operating point where the
platform is at rest relative to its initial configuration.

4 Examine the states by scrolling down in the States window.

• There are six states associated with the null controller Integrator block.

Clear the Steady State check boxes for these states. The trimming will
not hold the controller signal as fixed.

• Below these six are twelve states associated with the Transfer Fcn blocks
in the Filtered Derivative subsystem.

Free them from being fixed by clearing their Steady State check boxes.
Make their values (0) known by selecting their Known check boxes.

9-52

Designing Controllers

The rest of the states are associated with the positions and velocities of the
Stewart platform leg joints. Only six of these states are independent. The
others are constrained. Leave their settings as the defaults.

5 Move to the Outputs subpanel. Under Output Specifications, select the
Known check box (the topmost check box in that column). This action
specifies all outputs, the state deviations from the desired operating point.
There are 40 states (constraints) in Trimming mode.

The output values are specified in the Value column. The values are all
zero, indicating that all constraints on states (the specifications of the
operating point) must be satisfied within tolerance.

6 From the Manager window menu bar, select Tools > Options. The
Options window opens. Select the Operating Point Search panel.

In the Optimization Method area, select Nonlinear least squares in
the Optimization Method menu.

Leave the other defaults. Click OK. The Options window closes.

7 Back in the Control and Estimation Tools Manager, click the Compute
Operating Points button at the bottom of the Create Operating Points
panel.

9-53

9 Case Studies

The Computation Results subpanel indicates the progress of the
trimming. When finished, it should indicate that the operating point
specifications were successfully met.

In the Operating Points node to the left, a new Operating Point subnode
appears, Operating Point, containing the results of this trimming.

Interpreting and Saving the Operating Point
Examine and save the operating point results.

1 Click Operating Point. Look at the States and Outputs panels.

Under Outputs, the Desired dx values (if not marked N/A) are zero. For
the mechanical states (constraints), the Actual dx values (deviations from
the requested operating point) are zero within tolerance.

This is not true for the Controller states, which you did not require to
vanish. The Filtered Derivative states are all zero.

2 Save this operating point by right-clicking Operating Point and selecting
Export. Except for the name, leave the defaults.

For Variable Name, enter oppoint_PLANT. Click OK.

You now have a workspace object (opcond.OperatingPoint class) called
oppoint_PLANT representing the plant holding still at the start of
simulation (t=0). Retain this object for later use.

3 Examine its states by entering

oppoint_PLANT % List plant states at t=0

4 Reset the controller initial condition to the new operating point.

initCondI = oppoint_PLANT.States(1).x(1);

Linearizing the Platform Motion at the Operating Point
Now switch the model back to Forward Dynamics mode. The mechanical
states are now the 52 tree states corresponding to the uncut joint primitives.

9-54

Designing Controllers

1 Open the Plant subsystem, then its orange Machine Environment block.
Locate the Parameters tab.

2 In the Analysis mode pull-down menu, select Forward Dynamics. Click
OK and close the subsystem.

Then linearize the plant motion about the operating point you specified in
earlier. Return to the Control and Estimation Tools Manager.

1 Select Tools > Options. In the Options dialog, select the Linearization
State Ordering tab.

Click the Sync with Model button at the bottom, then click OK.

2 Now select the Linearization Task node to left, then the Operating
Points panel. Select the Operating Point called Operating Point.

3 At the bottom of the panel, make sure the Plot linear analysis result in
a check box is selected. Then choose a plot type in the pull-down menu. For
example, pick Bode response plot.

4 Then click the Linearize Model button. The LTI Viewer opens with a
large family of Bode response plots.

For later reference, you can choose other response plot types by
right-clicking on one of the plots and, under Plot Type, selecting a
different plot, such as Bode, Step, or Impulse. (You do not need to go back
to Linearization and relinearize the model.)

Interpreting and Saving the Linearization Results
This plant linearization started with six inputs (the leg forces) and 12 outputs
(six leg positions and six leg velocities). The LTI Viewer displays 6 x 12 = 72
response plots. To view one plot individually,

1 Right-click any one of the 72 plots and select I/O Selector. The I/O
Selector dialog opens.

2 This dialog lets you to choose any response of one output relative to one
input. To see that plot in the LTI Viewer, click the corresponding black dot.

9-55

9 Case Studies

Each plot shows how one of the outputs (a position or velocity) responds to the
application of a small force in one of the input channels. Different plot types
(impulse, step, Bode, etc.) yield different aspects of the response.

Export the results of your linearization.

1 Select File > Export in the LTI Viewer.

2 Choose your model and give it a unique name (call it sys) under Export As.

3 Click Export to Workspace. The model is saved as an LTI object. The
variable class is ss, the canonical state space form used by Simulink.

Retain this LTI object for the next section, where you use it to improve the
PID controller.

Further Suggestions
You can apply these results to other controllers (see “A Robust, Multichannel
Controller” on page 9-63), as well as choose other operating points.

Improving the New PID Controller

Note This section requires Control System Toolbox and Simulink Control
Design. Saving intermediate model versions and workspace values is
recommended.

To proceed with this section, you need to have completed the preceding
section, “Trimming and Linearizing the Platform Motion” on page 9-50.

In this section, you use the linearization results to create a controller to better
match the plant. This information allows you to convert open-loop information
about the controller and plant into closed-loop behavior of the coupled system.

A PID controller acts as the same controller on each of the platform legs. You
can improve the controller’s response to each leg’s motion by working with
the diagonal components of the plant response. These components represent
a leg’s motion response to the force acting on that leg. This control design

9-56

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/simcontrol/

Designing Controllers

paradigm is single-in, single-out (SISO). By symmetry, designing the PID
settings with one of the leg’s control behavior optimizes them for the other five.

The SISO approach ignores coupling between the legs. The last section of the
study, “A Robust, Multichannel Controller” on page 9-63, tackles multichannel
coupling to achieve a more accurate controller design.

What You Need from Previous Sections
From the preceding section, “Trimming and Linearizing the Platform Motion”
on page 9-50, you should have these saved in your workspace:

• Linearized plant model as an LTI object (ss class) called sys

• Controller initial condition initCondI reset to the operating point

• Useful intermediate model versions and workspace variable MAT-files

Throughout this section, keep the derivative block as Filtered Derivative
and the PID controller as biproper.

Reducing the State Space with Minimal Realization
Many of the mechanical states in sys are constrained. Remove them with the
sminreal command. This reduction works with the structure of the sys,
rather than (like minreal) with the numerical properties of sys.

G = sminreal(sys); % Structural reduction of linearized sys

G now represents the reduced linearized plant.

Exploring PID Gains, Filtered Derivative, and Force Saturation
One way to get a feel for the effect of PID feedback control on the Stewart
platform’s motion is to vary the gains, frequency cutoff, and force saturation
systematically, while holding fixed the reference trajectory and the platform
initial conditions.

The larger Kd is relative to Kp and Ki, the more sensitive the controller is to
immediate changes in the reference signal. (The same is true of Kp relative to
Ki.) The derivative term emphasizes rapid change. On the other hand, if Kd is

9-57

9 Case Studies

small, the controller is more sluggish in response. The Ki term emphasizes
memory of motion errors past. A fundamental tradeoff of control design is

• A more responsive PID controller is also less stable against high-frequency
(short time-scale) disturbances such as noise.

• A more stable controller is less responsive to feedback.

For large filtering constant A, the biproper transfer function c(s) behaves
at small s almost exactly like the improper C(s). But as you reduce A, c(s)
behaves less like C(s). In the time domain, for smaller A, the controller c(s)
shows more transient deviation from the pure derivative behavior of C(s).

The PID controller also depends on the force saturation limit, set in the
workspace by force_act_max. Making the force saturation limit too small
means that the controller cannot actuate the legs sufficiently to make
them keep up with the reference trajectory signal. The platform motion
moves toward instability with a lower force saturation limit. Too low a limit
eventually yields motion that is unacceptably extreme or completely unstable.
Up to a point, you can compensate for a lower force saturation limit by making
the controller more responsive.

Analyzing the Plant Response with the SISO Design Tool
A better way to optimize the PID controller is to analyze the open- and
closed-loop system response with the SISO design tool.

Open the SISO Design Tool by entering

sisotool(G(1,1)); % SISO design tool for first leg-leg pair

The design tool opens with a unity controller (compensator), C(s) = 1. Use
the Help menu for complete information about the design tool, including how
to interpret the plot symbols.

The Root Locus Editor to the left shows the closed-loop CG/(1+CG)
response, the s-plane poles, zeros, and root-loci. The Open-Loop Bode
Editor to the right shows the open-loop CG plant response, including poles
and zeros.

9-58

Designing Controllers

The closed-loop response has eight poles, four on the left-half and four on the
right-half of the s-plane, the latter indicating instability. The open-loop Bode
plot displays the gain and phase margins.

SISO Design Tool with Stewart Platform Plant at Rest and Unity Controller

Designing a New Biproper PID Controller with the Plant
Response
To design a biproper PID controller, add two zeros and two poles and adjust
the overall gain. Observe these general rules for the poles and zeros:

• The numerator coefficients, including the overall gain, must be positive.
The easiest way to ensure this is for both zeros to have negative real parts.

• One pole must occur at zero. This corresponds to the integrator (I) part.

• The other pole must have negative real part.

To implement,

1 Select Compensators > Edit > C. The Edit Compensator C dialog
opens. Add poles and zeros. Click OK. The dialog closes.

9-59

9 Case Studies

2 In the root-locus plot, you can move controller and closed-loop poles and
zeros around by dragging them with your mouse. As you move closed-loop
poles, you also change the overall controller gain. Be sure to leave the
initially stable closed-loop poles in the left half-plane.

In the Bode editor, you can move open-loop (controller) poles and zeroes by
dragging them. You can also change the gain and phase margins.

3 The SISO design tool controller form is κ(1+αs)(1+βs)/s(1+γ]s). The overall
control gain κ is Ki in this form.

For Ki, use the value of your first guess found previously in “Designing a
New PID Controller” on page 9-47.

Optimizing the New Biproper PID Controller with the Plant
Response
To optimize your controller, change its response to suppress undesirable and
enhance desirable feedback. The objectives, typical in control problems, are a
high-gain response at low frequencies to achieve tracking performance and a
diminishing response at high frequencies to limit the controller’s sensitivity to
plant variations and noise.

The platform motions have low bandwidth, typically only a few Hertz (Hz).
The system should have strong response up to a few Hz (ω = about 10 rad/s),
then falling response for higher frequencies.

One controller pole must always remain at zero. Five system poles have
positive (unstable) real parts, a result of the first leg coupling to the other
five. You cannot eliminate these in a SISO analysis.

Improve the controller by

• Making the nonzero controller pole more negative. This increases A and
increases the phase margin while decreasing the gain margin.

• Improving transient response by adjusting the controller zeros.

• Lowering the gain margin by raising the overall Bode response. This
increases the overall controller gain κ = Ki.

9-60

Designing Controllers

Saving the Optimized New Biproper Control Law
Once you have a satisfactory controller, you can export the new optimized
biproper control law to the workspace and analyze it there to redefine the
filtered PID controller parameters Ki, Kp, Kd, and A.

Export the modified compensator from the SISO design tool.

1 Go to File > Export. Select Compensator. Rename it cBiproperOpt under
Export as.

2 Then click Export to Workspace.

cBiproperOpt is a zero-pole-gain form (LTI object of class zpk). For example,

cBiproperOpt

Zero/pole/gain:
6171074.4994 (s+15.51) (s+0.08378)

s (s+400)

9-61

9 Case Studies

Resetting the PID Gains and Derivative Cutoff
Extract the biproper PID controller parameters by inverting the zeros s±,
poles, and gain K. The standard zero-pole-gain form is

c(s) = K(s - s+)(s - s-)/s(s+A) = [(Kp + AKd)*s2 + (Ki + AKp)*s + AKi]/s(s + A)

• A = the negative of the biproper nonzero pole

• The gains are:

Ki = Ks+s- , Kp = -[K(s+ + s-) + Ki]/A , Kd = (K - Kp)/A

Reset your workspace variables accordingly.

[z,p,k] = zpkdata(cBiproperOpt) % Extract ZPK data from cBiproper
A = -p{1,1}(2) % Extract nonzero pole
Ki = k*z{1,1}(1)*z{1,1}(2)/A % Extract Ki gain
Kp = -(k*(z{1,1}(1) + z{1,1}(2)) + Ki)/A % Extract Kp gain
Kd = (k - Kp)/A % Extract Kd gain

Checking the Symmetric Equilibrium
Check that the symmetric equilibrium is stable with your new controller.

1 Make sure the Trajectory Switch is set to down.

2 Update the diagram (Ctrl+D) and rerun the model.

A trim point is rarely exact. There is typically a small but nonzero motion
error as the platform relaxes toward equilibrium.

Simulating the Moving Platform and Capturing the Motion
Errors
Now test the platform motion with the moving trajectory and your new
retuned biproper control law.

1 Set the Trajectory Switch back to up.

2 Restart the model. You should see reasonable motion errors and leg forces,
except perhaps for an initial transient.

9-62

Designing Controllers

3 Capture the Motion Errors from the logged signals structure sigsOut.

pid_opt_TS = sigsOut.('Motion Errors'); % Record motion errors

A Robust, Multichannel Controller

Note This part of the study requires Control System Toolbox and Robust
Control Toolbox.

To complete this section, you need to have completed the preceding section,
“Improving the New PID Controller” on page 9-56.

The controllers you have designed so far in this study are based on classical
PID techniques, where each channel is subject to the same control law and
the control law is tuned one channel at a time. This approach misses the
cross-coupling, the effect that the force on one platform leg has on the motion
of the other legs.

In this section, you redesign the Stewart platform controller by using modern
techniques that take multichannel coupling into account and implementing a
robust H-infinity controller [5], [6].

What You Need from Previous Sections
From preceding sections, you should have these saved in your workspace:

• Reduced state space representation G of the plant

• Time series structure pid_opt_TS

Viewing the H-Infinity Controller
Before starting,

1 From its right-click menu, under Block choice, switch the controller
subsystem to H_inf Controller.

2 Make sure that the derivative subsystem remains set to Filtered
Derivative and the Trajectory Switch in the Leg Reference Trajectory
subsystem is set to up.

9-63

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/robust/

9 Case Studies

Examine the controller subsystem, which is implemented via state space.

Stewart Platform H-Infinity Controller Subsystem

Defining a Desired Loop Shape Response
Start by specifying a desired open-loop response |C*G(1,1)| and plot its
singular values. For example,

Lsd = zpk([],[-1000 0],612770) % Define desired loop shape

Zero/pole/gain:
612770

s (s+1000)

sigma(Lsd) % Plot singular values

9-64

Designing Controllers

View the closed-loop response generated by this loop shape by entering:

step(feedback(Lsd,1)) % Feedback step response

Desired Loop Shape: Singular Values

Synthesize and Reduce a Controller with the Desired Loop
Shape
Now create a controller using the desired loop shape and plant response:

[K_ls,CL,GAM,INFO] = loopsyn(G,Lsd); % Synthesize controller

Check the size of the controller by entering

size(K_ls) % Check size of loopsyn controller

The example controller has 48 states. It is usually impractical to implement
a controller of such high order and computational intensity. So try reducing
the controller to 24th order:

Kr_ls = reduce(K_ls,24); % Reduce controller order

9-65

9 Case Studies

To estimate how many states you can ignore (truncate), plot both the full
and reduced singular values

sigma(K_ls,Kr_ls) % Plot singular values

Full and Reduced Loop-Synthesized Controllers: Singular Values

Simulating the Robust Controller and Capturing Its Motion
Errors
From the synthesized loop shape, extract the matrices needed to define the
state space model used in the H_inf Controller subsystem.

[Ak,Bk,Ck,Dk] = ssdata(Kr_ls); % Extract state space model

Run the loop-synthesized controller model. Then capture the motion errors.

loopsyn_TS = sigsOut.('Motion Errors'); % Record motion errors

Plotting and Comparing the Results
Finally, compare the motion error data from the two controllers:

• Redesigned PID

• Robust loop-synthesized

9-66

Designing Controllers

At the command line, enter:

figure
plot(pid_opt_TS.Time,pid_opt_TS.Data(1,:),'r', ...

loopsyn_TS.Time,loopsyn_TS.Data(1,:),'b')
ylabel('Motion Errors','FontSize',16)
xlabel('t (seconds)','FontSize',16)
legend('Redesigned PID Controller','Loopsyn Controller')

Apart from the initial transient, the loop-synthesized controller performs
better than the redesigned PID controller. In this example, the late-time
robust controller motion errors are more than an order of magnitude smaller
and exhibit no oscillatory “ringing.”

Redesigned PID and Loop-Synthesized Control System Motion Errors

For More About Designing Controllers
The problems and techniques of this study only touch the basics of control
design. In practice, you need to consider additional issues. Also consult
“References” on page 9-5.

9-67

9 Case Studies

Finding Other Operating Points
To fully understand the plant, you need to find other plant operating points
and optimize the controller in other representative states.

See the preceding case study, “Trimming Through Inverse Dynamics” on page
9-24.

Compensating for Noise and Uncertainty
To make the controller more robust, you should consider the effect of
parameter uncertainty and signal noise. This step involves comparing typical
plant motion frequencies, noise frequencies, and the filtered derivative cutoff.

The following toolboxes can help with such tasks:

• Robust Control Toolbox

• Simulink Response Optimization

• Simulink Parameter Estimation

Designing for Hardware Implementation
To move toward hardware implementation, you must consider discretizing the
controller [7]. Among other requirements, this necessitates using a fixed-step
solver, optimizing the solver step size and sample rate, and adjusting the
filtered derivative cutoff.

See the following two case studies:

• “Simulating with Code” on page 9-69

• “Hardware in the Loop” on page 9-79

9-68

http://www.mathworks.com/products/robust/
http://www.mathworks.com/products/simresponse/
http://www.mathworks.com/products/simparameter/

Simulating with Code

Simulating with Code

Note This advanced case study requires some experience with the code
generation features of Simulink. To complete it, you need to have Real-Time
Workshop installed, in addition to SimMechanics.

This case study leads you through a representative set of tasks related to
turning a Stewart platform model into generated code. “Learning About
the Model” on page 9-69 presents the model and special code generation
requirements. After you read it, proceed with the code generation tasks.

Code Generation Tasks
All code generation-related files and subdirectories are created in your
current MATLAB directory.

1 In “Generating an S-Function Block for the Plant” on page 9-73, you
convert the plant subsystem into a new, reusable S-Function block.

2 In “Model Referencing the Plant” on page 9-75, you reference the plant as
an external model from the plant subsystem in your original model and
convert the referenced model to code.

3 In “Generating Stand-Alone Code for the Whole Model” on page 9-77, you
convert the entire model into stand-alone code.

For More Information About Code Generation
To learn more about generating code from Simulink models, consult the
documentation for Real-Time Workshop.

To learn more about code generation with SimMechanics, see “Generating
Code” on page 5-28.

Learning About the Model
This study is based on these demo files, in addition to the initialization M-files.
Copy them into an empty directory before starting each case study task.

9-69

http://www.mathworks.com/products/rtw/
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/

9 Case Studies

File Purpose

mech_stewart_codegen Basic model

mech_stewart_codegen_plant Plant subsystem as separate
model

Open the first model. Then update the model by either entering Ctrl+D from
the keyboard.

You use the second model file later for model reference in “Model Referencing
the Plant” on page 9-75.

Solver and Sample Time Step Sizes
The model defines two time steps, dt1 and dt2. The model initializes both
to the same value (see Configuration Parameters for Stewart Platform Code
Generation on page 9-72):

• dt1 defines the fixed-step solver time step.

• dt2 defines the sample rate for the generation of the trajectory signals.

9-70

Simulating with Code

Structure of the Model
The two major parts of the model are the PID controller and the plant. You
can generate code from the entire model or from only part of it. In this study,
you convert the plant subsystem to code in two ways, by an S-function block
and by model reference. You then convert the whole model to stand-alone code.

Caution To convert a subsystem alone to code requires placing all of the
SimMechanics blocks (the blocks with the distinctive Physical Modeling
connector ports and Body Coordinate System ports) into the subsystem.
mech_stewart_codegen encapsulates all SimMechanics blocks in the Plant
subsystem.

Run the model before continuing with code generation. You can view
the Stewart platform motion by opening the Scope. You can also enable
visualization. (See Chapter 6, “Visualizing and Animating Machines”.)

Simulation Settings for Code Generation
Some of the Simulink and SimMechanics settings in mech_stewart_codegen
are different from the defaults.

From the model’s Format menu, check that these entries are selected:

• Port/Signal Displays > Sample Time Colors

• Port/Signal Displays > Wide Nonscalar Lines

Other settings are optimized for code generation.

1 View the Plant subsystem parameters by right-clicking the subsystem and
selecting Subsystem Parameters, then close the dialog.

• Treat as atomic unit is selected.

• Minimize algebraic loop occurrences is selected.

2 Now view the Configuration Parameters dialog by selecting it from the
model’s Simulation menu. View the different nodes, then close the dialog.

9-71

9 Case Studies

• Solver node. The model uses a fixed-step solver. While S-function
Target does not require fixed-step solvers, most Real-Time Workshop
targets require fixed-step solvers.

• Data Import/Export node. Time, states, and output are selected for
data export.

• Outputs correspond to the ports connected to the outport signals.

Top Plate Position: translation and rotation (Port 1)

Errors: difference of reference and actual top plate positions (Port 2)

Leg Forces: control forces parallel to each Stewart platform leg (Port 3)

• The states represent the states of the controller and the plant. The
controller has Simulink states, and the plant has SimMechanics
mechanical states.

The model states are not identical to the system’s independent degrees
of freedom (DoFs). See “Counting the Degrees of Freedom” on page 9-8
and “Identifying the Simulink and Mechanical States” on page 9-21.

Configuration Parameters for Stewart Platform Code Generation

Node Settings

Solver Solver options: Type: Fixed-step
Solver options: Solver: ode1 (Euler)
Fixed-step size: dt1 (5e-3 seconds)

Data
Import/Export

Time: tout
States: xout
Output: yout

Optimization Simulation and code generation: Inline
parameters selected (needed for Model Reference)

Model
Referencing

Minimize algebraic loop occurrences selected

9-72

Simulating with Code

Configuration Parameters for Stewart Platform Code Generation
(Continued)

Node Settings

Real-Time
Workshop

Target selection: System target
file:ert.tlc (no auto configuration)
(Embedded Real-Time Target)
Interface: Software environment:
continuous time selected
Interface: Verification: MAT-file
logging selected

SimMechanics Diagnostics: all cleared
Visualization: all cleared

3 Now open the Plant subsystem and the orange Machine Environment
block. Check the following settings, then close the dialog.

The constraint solver is set to stabilizing, a robust choice appropriate for a
fixed-step simulation of moderate computational cost. Robust singularity
handling is selected.

Machine Environment Settings for Stewart Platform Code Generation

Panel Settings

Parameters Linear assembly tolerance: 1e-3 m
Angular assembly tolerance: 1e-2 rad

Constraints Constraint solver type: Stabilizing
Use robust singularity handling selected

Visualization Visualize machine selected

Generating an S-Function Block for the Plant
The S-function Target feature of Real-Time Workshop lets you generate an
S-function block for a subsystem. This block points to a (non-stand-alone)
auxiliary binary file that hides the original subsystem. You can then use the
S-function block in multiple instances in any Simulink model, including your
original one, without SimMechanics.

9-73

9 Case Studies

Caution To conform to Real-Time Workshop default settings, you must reset
the simulation (stop) time to 50 times the step size, or 50*dt1, just before
generating the S-function block. Afterward, you can set the stop time back to
its original value before starting the simulation with the S-function block.

1 Right-click on the Plant subsystem. Select Real-Time Workshop, then
click Generate S-Function in the submenu.

A new window opens, Generate S-function for Subsystem: Plant,
listing the workspace variables used in the subsystem. At this point, you
can make ordinary Simulink parameters tunable, but you cannot tune
SimMechanics parameters. See “Generating Code” on page 5-28.

2 Proceed with generating the code files by clicking Build in the tunable
parameter window. Follow the generation in the command window.

Two auxiliary subdirectories are created, as well as C source and header
files and a (non-stand-alone) linked binary. Each of these files has a name,
Plant_sf, derived from the subsystem name.

A new Simulink model window also appears, containing the new, reusable
S-function block named Plant that points to the linked binary. Rename this
block to S-Function Plant.

3 From the original mech_stewart_codegen model window, cut the Plant
subsystem. Paste it into the new, untitled window.

Save this new model, containing the S-function and subsystem blocks for
future use, as mech_stewart_codegen_plant_sfunc.

4 Copy the S-Function Plant block from the untitled window into the original
model window. Connect the signal lines to the S-function block.

9-74

Simulating with Code

5 Now start the model with the new S-function block. This modified model no
longer requires SimMechanics. The performance is about the same as the
original model with the subsystem.

Save the modified model for future use as mech_stewart_codegen_sfunc.

Model Referencing the Plant
Real-Time Workshop gives you another way to generate code for a subsystem.
Using the Model Reference feature, you can put the subsystem in a separate
model, then replace the subsystem block in the original model with a model
reference block that points to the new model holding the subsystem. For
mech_stewart_codegen, the plant subsystem is contained in the model file
mech_stewart_codegen_plant.

One advantage of model referencing is that it allows you to incrementally
compile parts of your model, one at a time. This feature saves significant time
when you generate code from large models.

Simulation Settings for Model Reference
Some settings in mech_stewart_codegen_plant are different from the defaults.
Many differ from the defaults in the same way that mech_stewart_codegen
does. Here are additional settings in the Configuration Parameters of this
model that differ from the defaults.

Node Settings

Model Referencing Rebuild options for all referenced
models: Rebuild options: Never
Rebuild options for all referenced models:
Never Rebuild targets diagnostic: None

Real-Time
Workshop

Interface: Code interface: Single output/update
function cleared

Setting Up and Running the Main Model for Model Reference
To reconstruct your model for model referencing,

1 In mech_stewart_codegen, cut the Plant subsystem.

9-75

9 Case Studies

Keep this subsystem for future use. From the preceding part of the study,
“Generating an S-Function Block for the Plant” on page 9-73, you have a
model, mech_stewart_codegen_plant_sfunc, with the subsystem. If you
have not already saved the subsystem here, do so now by pasting it in.

2 From the Simulink Ports & Subsystems library, drag and drop a Model
block into mech_stewart_codegen. Rename the block Model Reference
Plant.

3 Open the Model Reference Plant block dialog. In the Model name field,
enter mech_stewart_codegen_plant. Click OK.

Save the new, modified model as mech_stewart_codegen_modelref.

Stewart Platform with Control Reference Trajectory for Model Reference

4 In the toolbar of mech_stewart_codegen_modelref, click the Start button.

In the command window, watch the code generation for model referencing.
When it finishes, the simulation starts. Watch the simulation results by
opening the Scope block.

Running or updating the main model generates a code directory and a
non-stand-alone (linked) binary file called mech_stewart_codegen_plant_msf
from the referenced model. The model reference block in the original model
points to this binary. You can view the model reference code generation in the
command window each time you update the diagram.

9-76

Simulating with Code

Generating Stand-Alone Code for the Whole Model
In this section, you generate a stand-alone executable from the original
Stewart platform model, mech_stewart_codegen, using Real-Time Workshop
and the Embedded Real-Time target. This executable is portable and
independent of MATLAB.

1 From the Tools menu in the model menu bar, select Real-Time Workshop,
then Build Model. The build process begins in the command window.

Real-Time Workshop generates two auxiliary subdirectories, as well as a
stand-alone executable named mech_stewart_codegen.

2 Start the executable by entering

!mech_stewart_codegen

A MAT-file called mech_stewart_codegen.mat is created whenever you
run the executable. This file contains the output, state, and time data
exported from the model.

3 You can load this MAT-file into your workspace and examine its variables,
all distinguished by the rt_ prefix.

From the MATLAB Desktop Current Directory window, right-click
mech_stewart_codegen.mat and select Import Data. The Import
Wizard appears, listing the variables that were generated, at each time
step, by running the executable. These include:

• rt_tout: Simulation times

• rt_xout: States

• rt_yout: Outputs

4 Click Finish on the Import Wizard dialog. The variables are loaded into
your workspace.

Examine the variables in workspace and double-click each of the three. The
Array Editor displays the variable values as arrays (in the two cases of
outputs and states, arrays as parts of data structures).

9-77

9 Case Studies

These variables include:

• The variable rt_tout containing the simulation times.

• The variable rt_xout containing the state signals. These states include
a six-column array representing the Controller subsystem states and a
52-column array representing the mechanical states of the Plant.

- The six controller states are the six leg positions integrated by the
Controller/Integrator block for PID control.

- The 52 mechanical states are discussed in “Identifying the Simulink and
Mechanical States” on page 9-21.

• The variable rt_yout containing the output signals. These outputs are the
three output signals designated by the model’s output signal ports (Top
Plate Position, Errors, and Leg Forces).

9-78

Hardware in the Loop

Hardware in the Loop

Note This case study requires experience with code generation and dedicated
hardware deployment. To complete it, you need to have installed the following
products, besides MATLAB, Simulink, and SimMechanics:

• Real-Time Workshop

• xPC Target

Working first through “Simulating with Code” on page 9-69, is strongly
recommended.

A common step after generating and compiling code from a model is to
download the compiled executable to a computer dedicated to running just
that application. For a model with a control system, you can download the
complete model as a unit or separate the controller and plant into different
executables on different computers. You can also execute the controller part
as embedded code on a dedicated computer that controls an actual plant.
Such application deployments are known as hardware in the loop or rapid
prototyping [8].

xPC Target and Real-Time Workshop allow you to generate and compile
code from a SimMechanics model and download it to a computer with an
IBM PC-type processor. xPC Target acts as another target within Real-Time
Workshop and requires a fixed-step solver. You can use xPC Target to
implement controller-plant models in many configurations [9].

This section outlines some model conversion-downloading applications based
on the Stewart platform modeled in SimMechanics.

• “Adjusting Hardware for Computational Demands” on page 9-80

• “Downloading a Complete Model to the Target” on page 9-81

• “Configuring for Realistic Hardware” on page 9-87

9-79

http://www.mathworks.com/products/rtw/
http://www.mathworks.com/products/xpctarget/

9 Case Studies

For More Information About xPC Target
Consult the xPC Target documentation for complete instructions on
downloading and running executable code in different configurations.

Files Needed for This Study
This study requires mech_stewart_xpc, as well as the initialization M-files.

Adjusting Hardware for Computational Demands
Simulation with a fixed simulation time is subject to the basic tradeoff
between accuracy and speed. (See “Improving Performance” on page 5-23.)
You can make a simulation more accurate by reducing its step size, but at the
expense of creating more time steps and slowing down the real clock time.
You can speed up the simulation by increasing the time step size, but you risk
losing enough accuracy that the simulation fails to converge.

Real-Time Simulation Tradeoff for SimMechanics
A typical requirement for code running on dedicated processors is that the
simulation run in real time. That is, the compiled code should run with

• A finite number of steps (requiring fixed-step solvers)

• Execution time no longer than the physical time being simulated

These requirements are particularly critical for controller code.

With SimMechanics, the accuracy-speed tradeoff is acute. SimMechanics
models are computationally intensive and become even more so the more
closed loops and constraints you add.

• With dedicated processor execution, reducing the step size ultimately leads
to processor overload. The processor needs more clock time to execute a
step than the solver time step allows.

• In SimMechanics simulations, convergence failure resulting from too large
a time step typically appears as a failure of your simulation to respect
constraint tolerances, assembly tolerances, or both.

9-80

http://www.mathworks.com/access/helpdesk/help/toolbox/xpc/

Hardware in the Loop

Simple SimMechanics models require central processor speeds in the
mid-hundreds of megahertz (MHz) range. More complex models such as the
Stewart platform (with 36 degrees of freedom, as well as 5 independent closed
loops and 40 constraints arising from cutting those loops) demand more
processor speed, starting in the low gigahertz (GHz) range.

Mitigating the Real-Time Simulation Tradeoff
You have two ways to alleviate the conflict between accuracy and speed in
real-time simulation.

• Increase the processor speed. This allows you to reduce the solver step size
while keeping the clock time unchanged.

• Break up a complete model into parts, each simulated by its own model
downloaded to and executed on a different processor.

Both approaches are complicated by additional factors, such as memory
caching and bus speed. Real-time simulation distinguishes between the
sample time in signal buses and the solver step size.

Caution Sample time must be a positive integral multiple of solver step size.
For SimMechanics models, avoid making sample time larger than step size to
prevent simulation convergence failures.

Downloading a Complete Model to the Target
As a trial of running the Stewart platform simulation on dedicated hardware,
here you convert a model to code, then download it and run it on an external
PC-type computer. The model requires a processor of speed approximately 2
GHz or faster, and a separate target computer monitor.

Consult the xPC Target documentation for details on preparing the target
computer, establishing the host-target connection, and interacting with the
target from the host.

9-81

http://www.mathworks.com/access/helpdesk/help/toolbox/xpc/

9 Case Studies

Setting Up the Target Computer and Host-Target Connection
The results here were obtained with host and target PC-type computers, each
with a 3 GHz Pentium 4 processor and 1 gigabyte of RAM, communicating
with each other by an RS-232 connection.

To set up the connection and start the target, you need an RS-232 cable and a
blank, formatted floppy disk. The target requires a floppy disk drive. You can
observe target simulation on a target monitor, your host monitor, or both.

1 Connect the host and target computer to one another with their respective
RS-232 ports and a cable.

2 From MATLAB, prepare an xPC Target boot floppy disk.

3 Insert the prepared xPC Target boot disk into the target PC floppy drive.
Start the target computer.

4 After the target has finished booting, confirm the host-target connection.

Examining and Running the xPC Model — Data Type
Conversion
For this example, you use a variant of the code generation model presented in
the preceding study, “Simulating with Code” on page 9-69.

• The model contains xPC Scope blocks for observing the simulation results
later. The Scope type for each is Target. Thus they will appear on the
target PC after you download the compiled code.

• The controller and plant work with the default Simulink 64-bit floating
double data type. To test the effect of the type conversion needed for
passing signals on a hardware bus, the model also contains subsystems that
convert these floating doubles to fixed-point integers, then back to doubles.

The data conversion truncates the controller-plant data and changes the
simulation behavior somewhat. It is critical to test the impact of such
changes before deploying the code to hardware.

9-82

Hardware in the Loop

1 Open this model, mech_stewart_xpc. Update the diagram (Ctrl+D). The
vector signals now appear as wide lines and display their data types.

Stewart Platform with Control Reference Trajectory for xPC Target

2 Open the Force Conversion and Length Conversion subsystems. Each
subsystem converts a vector signal from floating doubles to 16-bit integers
(typical of hardware buses) and back to doubles. These subsystems mimic
the effect of hardware buses communicating between controller and plant.

Before the data are converted to integer format, they must be converted
from floating to fixed point, truncating the floating double signals. The
Data Type Conversion blocks that change doubles to fixed points apply
scaling to ensure that information lost to truncation is “small,” as defined

9-83

9 Case Studies

by the force and leg length numbers typical of this simulation. These
scalings are set in the Data Type Conversion block dialogs.

3 Close the Conversion subsystems. Open the Scope.

4 Run the model and observe the motion. Afterward, close the Scope.

The difference between this Stewart platform simulation and earlier ones
is clear in the Leg Forces scope trace, which exhibits a small level of “noise”
after the initial transient has passed. This “noise” is due to data truncation
when the floating doubles are converted to fixed point.

Generating and Downloading Code from the xPC Model
In the next steps, you convert the model to code and download it to the target.

1 Confirm the solver step size (dt1) and sample time (dt2) by entering

dt1, dt2

at the command line. The values are 5.0 milliseconds (ms).

9-84

Hardware in the Loop

2 Check the code generation target selection in Configuration Parameters,
under the Real-Time Workshop node, Target selection > System
target file. The target selection is xpctarget.tlc.

Under the Real-Time Workshop node, check the xPC Target options
entry. Leave these default settings.

3 On the Real-Time Workshop panel, click Build to start code generation.

Follow the progress on the command window, as Real-Time Workshop
generates and compiles the model, then downloads it to your target
computer. When the download is complete, you see the four empty xPC
Target scope windows on the target monitor.

Running the xPC Stewart Platform Model on the Target
The xPC Target interface creates an object called tg that allows you to control
the application on the target machine.

1 Using the xPC Target interface, start the target application.

The target computer monitor displays the execution. In the Command
Window, the xPC Target interface summarizes the execution results.

2 Stop the target application. The Command Window displays the execution
summary. The target scopes display the simulation results.

Viewing the Target Simulation with xPC Scopes
xPC Target allows you to observe simulation in various ways. The xPC Target
documentation explains the details.

• In the first run, you observed target-type xPC scopes on the target monitor.

• You can change the Scope type of one or more xPC scopes to Host and
observe them on your host computer instead.

• The xPC Target interface also allows you to connect and display such scopes
while the simulation is running. You can make connecting and displaying
scopes during simulation easier by changing the stop time to infinity (inf).

9-85

9 Case Studies

Adjusting the Step and Sample Times — Testing for CPU
Overload
You can make your simulation more accurate by reducing the solver step size.
But by requiring more steps, you also make the simulation more intensive.
If the solver step size drops below the task execution time (TET), the target
processor cannot keep up with the simulation and suffers CPU overload.

The xPC Target summary in the Command Window indicates if CPU overload
has occurred when you start or stop target object (tg) execution.

Test for CPU overload by reducing dt1 and dt2.

1 Enter

dt1 = 0.0025; dt2 = 0.0025;

2 Build and download the generated code again.

3 Start the target application.

You can understand how close to, or how far into, CPU overload your model is
by comparing the TET with the solver/sample time.

• If the TET value is smaller than the sample/solver time, the target
processor is able to keep up with the solver.

• If the TET value is larger than the sample/solver time, the target processor
cannot keep up with the solver. CPU overload halts target execution.

You can keep reducing the solver/sample time until you cause CPU overload.
This point is the limit of your target processor with this model. You can work
around CPU overload by

• Using a faster processor. The ratio of TET to sample time indicates roughly
how much faster the processor needs to be.

• Increasing the solver/sample time. Be sure not to increase it too much, to
avoid simulation convergence failures.

See “Adjusting Hardware for Computational Demands” on page 9-80.

9-86

Hardware in the Loop

Configuring for Realistic Hardware
Typical goals of downloading compiled code to a dedicated computer are

• Simulating controller and plant in real time

• Embedding a discretized version of the controller code on a dedicated
computer that controls an actual plant

Separating Controller and Plant — Bus Communication —
Discretization
Controller and plant communicate through a hardware bus configured with a
specific data protocol. The xPC Target block library contains communication
blocks based on a variety of data protocols matching common hardware buses.
In realistic applications, the controller is often already discretized (simulated
with discrete states) and requires no conversion from floating point.

The plant simulation remains continuous (not discrete) to better imitate the
actual physical system.

Caution You cannot use discrete states with SimMechanics blocks in your
model. Discretizing a controller requires separating controller and plant into
different models.

Hardware Configuration Possibilities
Choose a model and hardware configuration depending on your needs.

• Separate controller and plant into different subsystems that communicate
through a physical bus interfaced with xPC Target bus blocks, rather than
normal Simulink signal lines. To run such a model on a target requires the
target to have the corresponding hardware card and bus cable.

• Separate controller and plant into two different models that also
communicate through a physical bus interfaced with xPC Target bus
blocks. You then download the two models to two separate targets that
communicate through a bus cable connected to the corresponding hardware
cards.

9-87

9 Case Studies

Once you separate controller and plant into different models, you can
discretize the controller.

• Embed the controller on a dedicated target that controls an actual Stewart
platform. The target and platform communicate through a bus or other I/O
hardware corresponding to the blocks used in the controller model.

Mitigating Real-Time Tradeoffs
Real-time simulations are restricted by the tradeoff between accuracy and
speed and limited by target execution time and maintaining convergence. You
need to ensure that your memory caching and bus, not just your processor(s),
are fast enough to cope with the computational demands of SimMechanics.
See “Adjusting Hardware for Computational Demands” on page 9-80.

9-88

10

Blocks — By Category

Machines, Bodies, and Grounds
(p. 10-2)

Create machines and model bodies

Joints (p. 10-2) Add degrees of freedom

Constraints and Drivers (p. 10-5) Remove degrees of freedom

Actuators and Sensors (p. 10-5) Initiate, impose, and measure
mechanical motions

Force Elements (p. 10-6) Interbody forces

Utilities (p. 10-6) Miscellaneous useful blocks

10 Blocks — By Category

Machines, Bodies, and Grounds

Body Represent customizable rigid body

Ground Represent immobile point at rest in
World

Machine Environment Set up mechanical environment for
machine

Shared Environment Connect two mechanical components
so that they share same mechanical
environment

Joints

Assembled Joints (p. 10-2) Collocated joints

Disassembled Joints (p. 10-4) Dislocated joints

Massless Connectors (p. 10-4) Rigidly separated joints

Assembled Joints

Bearing Represent composite joint with one
translational and three rotational
DoFs

Bushing Represent composite joint with three
translational and three rotational
DoFs

Custom Joint Represent customizable composite
joint with up to three translational
and up to three rotational degrees of
freedom

10-2

Joints

Cylindrical Represent composite joint with one
translational DoF and one rotational
DoF, with parallel translation and
rotation axes

Gimbal Represent composite joint with three
rotational DoFs

In-Plane Represent composite joint with two
translational DoFs

Planar Represent composite joint with
two translational DoFs and one
rotational DoF, with rotational axis
orthogonal to plane of translational
axes

Prismatic Represent prismatic joint with one
translational degree of freedom

Revolute Represent assembled revolute joint
with one rotational degree of freedom

Screw Represent composite joint with one
translational DoF and one rotational
DoF, with parallel translation
and rotation axes and linear pitch
constraint between translational
and rotational motion

Six-DoF Represent composite joint with three
translational and three rotational
DoFs

Spherical Represent assembled spherical joint
with three rotational degrees of
freedom

Telescoping Represent composite joint with one
translational and three rotational
DoFs

10-3

10 Blocks — By Category

Universal Represent composite joint with two
rotational DoFs

Weld Represent joint with no DoFs

Disassembled Joints

Disassembled Cylindrical Represent disassembled cylindrical
joint, with one translational DoF and
one rotational DoF along and about
misaligned axes, with no constraints

Disassembled Prismatic Represent disassembled prismatic
joint with one translational degree of
freedom along misaligned axes

Disassembled Revolute Represent disassembled revolute
joint with one rotational degree of
freedom about misaligned axes

Disassembled Spherical Represent disassembled spherical
joint with three rotational degrees of
freedom about dislocated pivots

Massless Connectors

Revolute-Revolute Represent composite joint composed
of two revolute primitives spatially
separated by massless connector of
constant length

Revolute-Spherical Represent composite joint composed
of revolute and spherical primitives
spatially separated by massless
connector of constant length

Spherical-Spherical Represent composite joint composed
of two spherical primitives spatially
separated by massless connector of
constant length

10-4

Constraints and Drivers

Constraints and Drivers

Angle Driver Specify angle between two body axis
vectors as function of time

Distance Driver Specify distance between two Body
CS origins as function of time

Gear Constraint Constrain rotational motion of two
bodies to move along tangent pitch
circles

Linear Driver Specify component of vector
difference of two Body CS origins as
function of time

Parallel Constraint Constrain body axis vectors of two
bodies to be parallel

Point-Curve Constraint Constrain motion of point on one
body to be along curve on another
body

Velocity Driver Specify linear combination of the
linear and angular velocities of two
bodies as function of time

Actuators and Sensors

Body Actuator Apply force or torque to body

Body Sensor Measure body motion

Constraint & Driver Sensor Measure constraint force or torque
between pair of constrained bodies

Driver Actuator Apply relative motion between a pair
of constrained bodies through driver

Joint Actuator Apply force, torque, or motion to
joint primitive

10-5

10 Blocks — By Category

Joint Initial Condition Actuator Apply initial positions and velocities
to primitives of Joint before starting
simulation

Joint Sensor Measure motion of and force or
torque on joint primitive

Joint Stiction Actuator Apply classical friction to joint
primitive

Variable Mass & Inertia Actuator Vary mass and inertia on body at
specific body coordinate system as
function of time (not including thrust
force or torque)

Force Elements

Body Spring & Damper Model damped linear oscillator force
between two bodies

Joint Spring & Damper Model damped linear oscillator force
or torque on prismatic or revolute
joint between two bodies

Utilities

Connection Port Create Physical Modeling connector
port for subsystem

Continuous Angle Convert discontinuous, bounded
angular output from sensor to
continuous, unbounded angular
output

10-6

Utilities

Mechanical Branching Bar Map multiple sensor or actuator
lines to one sensor or actuator port
on Joint, Constraint, or Driver, or to
one Body coordinate system port on
Body

RotationMatrix2VR Convert 3-by-3 rotation matrix to
equivalent VRML form of rotation
axis and angle

10-7

10 Blocks — By Category

10-8

11

Blocks — Alphabetical List

Angle Driver

Purpose Specify angle between two body axis vectors as function of time

Library Constraints & Drivers

Description The Angle Driver block drives axis vectors defined on two Bodies. You
specify fixed base and fixed follower body axis vectors aB, aF in the
Body CS on either side of the Driver on each body, then drive the angle
between the body axis vectors as a function of time.

The Angle Driver block specifies the angle θ defined by

cos = | |/(| || |)B F B Fθ a a a a⋅

as a function of time: θ = θ(t=0) + f(t). You connect the Angle Driver
to a Driver Actuator block.

The Simulink input signal into the Driver Actuator specifies the
time-dependent driving function f(t) and its first two derivatives, as
well as their units. If you do not actuate Angle Driver, this block acts as
a time-independent constraint that freezes the angle between the two
body axes at its initial value θ(t=0) during the simulation.

Drivers restrict relative degrees of freedom (DoFs) between a pair of
bodies as specified functions of time. Locally in a machine, they replace
a Joint as the expression of the DoFs. Globally, Driver blocks must occur
topologically in closed loops. Like Bodies connected to a Joint, the two
Bodies connected to a Drivers are ordered as base and follower, fixing
the direction of relative motion.

Note If the two axes come close to aligning, that is, if θ approaches
zero, the constraint between the two axes becomes singular, and the
simulation slows down. See “How SimMechanics Works” on page 5-15
and “Handling Motion Singularities” on page 5-9.

You can also connect a Constraint & Driver Sensor to any Driver
measure the reaction forces/torques between the driven bodies.

11-2

Angle Driver

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower rotating in the right-handed
sense about the rotation axis.

Current base
When you connect the base (B) connector port on the Angle Driver
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure, Angle
Driver Base and Follower Body Connector Ports on page 11-4.

Current follower
When you connect the follower (F) connector port on the Angle
Driver block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Angle Driver Base and Follower Body Connector Ports
on page 11-4.

11-3

Angle Driver

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Driver Actuator and
Constraint & Driver Sensor blocks to this Driver. The default is 0.

To activate the Driver, connect a Driver Actuator.

Angle Driver Base and Follower Body Connector Ports

Parameters Fixed axis [x y z]
For the Base and Follower bodies, respectively, enter the body
axis vectors. The defaults are [1 0 0].

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate
axes the Base and Follower body axis vectors are oriented with
respect to. This CS also determines the absolute meaning of
reaction forces/torques at this Driver. The defaults are WORLD.

See Also Constraint & Driver Sensor, Driver Actuator, Parallel Constraint,
Velocity Driver

See “Modeling Constraints and Drivers” on page 4-38 for more on
restricting DoFs with Drivers.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on using drivers in closed loops.

See “Constraints and Drivers” on page 10-5.

11-4

Bearing

Purpose Represent composite joint with one translational and three rotational
DoFs

Library Joints

Description The Bearing block represents a composite joint with one translational
degree of freedom (DoF) as one prismatic primitive and three rotational
DoFs as three revolute primitives. There are no constraints among the
primitives. Unlike Telescoping, Bearing represents the rotational DoFs
as three revolutes, rather than as one spherical.

Caution A joint with three revolute primitives becomes singular if
two or three of the rotation axes become parallel (“gimbal lock”). The
simulation stops with an error in this case.

A joint with three revolute primitives must be configured in the initial
state with the three revolute primitive axes mutually orthogonal. There
are no restrictions on the primitive axes once the simulation starts,
except to prevent any two of the primitive axes from becoming parallel.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Bearing block is assembled: the
origins of these Body CSs must lie along the primitive axes, and the
Body CS origins on either side of the Joint must be spatially collocated
points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

11-5

Bearing

Note Bearings are often represented by one translational and one
rotational DoF. The Bearing block has three rotational degrees of
freedom, rather than one, in order to represent transverse “play” in
the joint.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify reference CSs to define the
directions of the joint axes.

11-6

Bearing

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis. Positive rotation is the follower moving around the
rotational axis following the right-hand rule.

Current base
When you connect the base (B) connector port on the Bearing
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Bearing Base and Follower Body Connector Ports on page 11-8.

11-7

Bearing

The base Body is automatically connected to the first joint
primitive R1 in the primitive list in Parameters.

Current follower
When you connect the follower (F) connector port on the Bearing
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Bearing Base and Follower Body Connector Ports on page 11-8.

The follower Body is automatically connected to the last joint
primitive P1 in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motions of prismatic and revolute primitives are specified in
linear and angular units, respectively.

Bearing Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
Bearing has an entry line. These lines specify the direction of the axes
of action of the DoFs that the Bearing represents.

Name - Primitive
The primitive list states the names and types of joint primitives
that make up the Bearing block: revolute primitives R1, R2, R3,
and prismatic primitive P1.

11-8

Bearing

Axis of Action [x y z]
Enter here as a three-component vector the directional axes
defining the allowed motions of these primitives and their
corresponding DoFs:

• Prismatic: axis of translation

• Revolute: axis of rotation

The default vectors are shown in the dialog above. The axis is a
directed vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the
revolute axes can be parallel.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

11-9

Bearing

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Bushing, Cylindrical, Gimbal, Prismatic, Revolute

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-10

Body

Purpose Represent customizable rigid body

Library Bodies

Description The Body block represents a rigid body whose properties you customize.
The representation you specify includes:

• The body’s mass and moment of inertia tensor

• The coordinates for the body’s center of gravity (CG)

• One or more Body coordinate systems (CSs)

A rigid body is defined in space by the position of its CG (or center of
mass) and its orientation in some CS.

Setting Body Initial Conditions The initial position and orientation
of a body are set by the entries in its Body dialog that define the body’s
home configuration. These initial conditions remain unchanged, unless,
with a Joint Initial Condition Actuator, you change the initial conditions
of the Joint(s) connected to the Body prior to starting the simulation,
or you actuate the Body with a Body Actuator. The imposition of
additional initial conditions defines the initial configuration of the body.

Defining a Body with Geometric and Mass Properties

In SimMechanics, you enter the body’s properties in two sets, the
geometric properties and the mass properties.

Geometric Properties
The geometric properties are defined by the body’s Body CSs.

• The CS with its origin at the CG is required. The CG point specifies
both the initial position of the whole body and the origin of the CG
CS. You must also orient the CG CS axes.

11-11

Body

• You can place one or more additional Body CSs on a body. The Body
dialog requires at least one. You must define each Body CS by the
position of its origin and the orientation of its CS axes.

• Each connection of a Joint, Constraint/Drive, Actuator, or Sensor
block to a Body requires an anchor point on the Body. This anchor
point is one of the Body CS origins.

• Body CSs on the block available for connections are shown by Body
CS ports on the sides of the block. You can show or hide each Body
CS on the block sides.

• The set of a body’s Body CS origins (including the CG CS) defines
the body’s convex hull, one of the visualization shapes available for
representing a body in space.

Mass Properties
The mass properties are defined by the body’s mass and inertia tensor.

• The mass is the body’s inertia and controls the translational
acceleration of the CG in response to an applied force.

• The inertia tensor measures the distribution of mass density in the
body and controls the rotational acceleration of the body about the
CG in response to an applied torque.

• The components of the inertia tensor control the initial orientation of
the body and are always interpreted as being in the CG CS axes. The
orientation of the CG CS axes with respect to another CS external to
the body (the World CS, a CS on a Ground, or a CS on another Body)
then determines the orientation of the body with respect to other
bodies or with respect to World.

• The body’s inertia tensor defines its principal axes and moments and
its equivalent ellipsoid, one of the visualization shapes available for
representing a body in space.

Default Initial State of a Body

These two properties determine a body’s initial position and orientation:

11-12

Body

• The position of a body’s CG sets its initial position.

• The body’s inertia tensor components (in the CG CS) and the
orientation of the CG CS axes with respect to other CSs in the
machine set its initial orientation.

The initial conditions of a machine can be changed with Joint Initial
Condition Actuator blocks before you start a simulation. If you do not
change the initial state of a Body before simulation, SimMechanics sets
its initial position and orientation to its Body dialog entries, defining
the body’s home configuration. SimMechanics also sets the Body’s
initial linear/angular velocities to zero in this case.

Dialog
Box and
Parameters

The dialog has two active areas, Mass properties and Body coordinate
systems.

11-13

Body

Mass
Properties

Mass
Enter the mass of the body in the first field and choose units in
the pull-down menu to the right. The mass must be a positive,
real number or MATLAB equivalent expression. The defaults
are 1 and kg (kilograms).

Inertia
Enter the inertia tensor (with respect to the Body CG CS axes)
in the first field and choose units in the pull-down menu to the
right. The tensor must be a 3-by-3 real, symmetric matrix. The
default tensor is eye(3), the MATLAB 3-by-3 identity matrix. A
zero tensor zeros(3,3) defines a point mass. The units default
is kg-m2 (kilograms-meters2).

Body
Coordinate
Systems

Configuring a Body Coordinate System

You set up Body CSs in the Body coordinate systems area:

• The default configuration consists of three Body CSs: the required
CG CS attached to the body’s CG and two other optional Body CSs,
called “CS1” and “CS2,” for connecting Joints, Constraints, or Drivers.

• You can configure the CG CS but not delete it. You also cannot create
additional CG CSs, although you can duplicate the CG CS with a
different name. (See more about Body coordinate systems controls
following.)

• The other CSs can be configured or deleted as you want, keeping
at least one.

• Configuring a Body CSs requires two groups of steps:

- Positioning the Body CS origin in the Position panel

- Orienting the Body CS axes in the Orientation panel

• Defining Body CSs requires referring to other, pre-existing CSs in the
model. In a given Body block, you can refer to Body and Grounded
CSs in three ways. The references must be to:

- World

11-14

Body

- Other Body CSs on the same body

- The Adjoining CS, the coordinate system on a neighboring body
or ground directly connected to the selected Body CS by a Joint,
Constraint, or Driver

• You must directly or indirectly define all Body CSs by reference to
a Ground or to World. With indirect reference, you specify a Body
CS relative to another CS and so on, in a chain of references that
ultimately ends in a Ground or World. The CS reference chains of the
Position and Orientation panels can be different. The CS reference
chains must not form a closed cycle.

• Toggle between the Position or Orientation panels with the tabs.

Each Body CS is labeled with a name, CG for the CG CS, and CS1,
CS2, etc., for additional CSs.

Configuring the Position Fields

The Position fields for each Body CS specify the position of that CS’s
origin as a translation vector:

• The numerical components of the vector carry units.

• The translation vector’s components are oriented with respect to
another set of CS axes.

• The origin is displaced from the origin of another, pre-existing CS in
your machine by this translation vector.

11-15

Body

Highlight each Body CS to configure it.

Origin Position Vector [x y z]
Enter the translation vector that defines the position of the Body
CS’s origin.

The entry for the CG CS origin positions the entire body.

Units
Choose linear units for the translation vector. The default is m
(meters).

Translated from Origin of
In the pull-down menu, choose the other, pre-existing CS in your
machine that defines the starting point for the translation vector.
The choices are World, Adjoining, and the other Body CSs on
this Body. The ending point of the translation vector is this Body
CS’s origin.

For the CG CS, the default starting-point CS is World. For the
additional Body CSs (CS1, CS2, etc.), the default starting point
CS is this Body’s CG.

Components in Axes of
In the pull-down menu, choose the CS whose axes define the
orientation of the translation vector’s components. The choices
are World, Adjoining, and the other Body CSs on this Body. The

11-16

Body

translation vector’s components are measured relative to the axes
of the CS chosen in this column.

For the CG CS, the default orientation CS is World. For the
additional Body CSs (CS1, CS2, etc.), the default orientation CS
is this Body’s CG.

Configuring the Orientation Fields

The Orientation fields for each Body CS specify the orientation of that
CS’s triad of axes as a rotation:

• The orientation vector specifying the rotation vector has three
components.

• The numerical components of the vector carry units.

• The rotation is oriented with respect to some other, pre-existing set of
CS coordinate axes in your machine.

• The orientation vector’s components are interpreted in the convention
of a rotation representation.

Highlight each Body CS to configure it.

Orientation Vector
Enter the components of the rotation that defines the orientation
of the Body CS’s axes. The geometric meaning of these components
is determined by the Specified Using Convention column.

11-17

Body

The special entry for the CG CS orients the CG CS axes. Together
with the Inertia tensor entry in Mass properties, the CG CS
axes orient the whole body with respect to another CS in your
machine.

Units
Choose angular units for the rotation, degrees or radians. The
default is deg (degrees).

Relative CS
In the pull-down menu, choose one of the other pre-existing CSs
in your machine to define the starting orientation for the rotation.
The choices are World, Adjoining, and the other Body CSs on
this Body.

Specified Using Convention
In the pull-down menu, choose the representation type for the
rotation:

Rotation Type Orientation Vector Components

Quaternion [nx*sin(θ/2) ny*sin(θ/2)
nz*sin(θ/2) cos(θ/2)]

3x3Transform 3-by-3 orthogonal rotation matrix R

Euler Rotation angles about sequence
of three axes defining
Euler angle convention
[first-axis second-axis third-axis]

Rotation Conventions

There are three conventions in a Body block for representing
rotations. See “Body Motion in SimMechanics” on page 3-4 and “How
SimMechanics Represents Body Orientation” on page 3-11 to learn
more about rotations.

11-18

Body

• Euler

The Euler angle convention specifies the rotation of the Body CS axes
by rotating about three axes in a sequence. The components of the
1-by-3 row vector are the angles of rotation about those three axes,
respectively in sequence, in degrees or radians.

For example, Euler X-Y-Z means rotate about the original X axis,
then about the first intermediate Y axis, and then about the second
intermediate Z axis. Another example: Euler X-Z-Y means rotate
about the original X axis, then about the first intermediate Z axis,
and then about the second intermediate Y axis.

• 3-by-3 Transform

The transform convention specifies the rotation as a dimensionless
3-by-3 orthogonal rotation matrix. The inverse of an orthogonal
matrix R is equal to its transpose: R-1 = RT.

The columns of R are the (x,y,z) unit vectors of the Body CS axes.
The units menu is inactive.

• Quaternion

The quaternion convention specifies the rotation in angle-axis form
as a dimensionless 1-by-4 row vector:

[nx*sin(θ/2) ny*sin(θ/2) nz*sin(θ/2) cos(θ/2)]

n = (nx,ny,nz) is a three-component vector of unit length: n·n = nx
2

+ ny
2 + nz

2 = 1.

The unit vector n specifies the axis of rotation. The rotation angle
about that axis is θ and follows the right-hand rule.

Managing the Body Coordinate Systems List

The Body coordinate system controls (see the following figure, Body
Coordinate Systems Controls on page 11-21) allow you to add, reorder,
and delete Body CSs on a Body block.

11-19

Body

To add a Body CS to the list:

1 Highlight an existing Body CS in the list.

2 Click the Add button (see the following figure, Body Coordinate
Systems Controls on page 11-21).

A new Body CS appears immediately below the Body CS you
highlighted. New Body CSs are named in sequence after the current
ones: CS3, CS4, etc.

To change the position of a Body CS in the list:

1 Highlight the Body CS whose position you want to change.

2 Click on the Up or Down button (see the following figure, Body
Coordinate Systems Controls on page 11-21) until the Body CS is
where you want it.

To delete a Body CS from the list:

1 Highlight the Body CS you want to delete.

You cannot delete the Body’s CG CS or the last one of the non-CG CSs.

2 Click on the Delete button (see the following figure, Body Coordinate
Systems Controls on page 11-21).

The Body CS you highlighted disappears.

11-20

Body

Body Coordinate Systems Controls

Managing Body CS Ports on a Body Block

Connecting a Joint, Constraint, Driver, Actuator, or Sensor block to a
Body block requires an existing and configured Body CS on that Body:

• These other blocks define, constrain, impart, and measure the motion
of bodies with respect to the origin and coordinate axes of Body CSs.
Connect each of these blocks to a Body CS with a connection line.

• The actual connection line running from the other block to the Body
block must be anchored to a displayed Body CS Port on the side of
the Body block in the model window.

11-21

Body

• A displayed Body CS Port on a Body block indicates a Body CS with
the displayed name configured internally within the Body block.

• Not all the Body CSs configured inside a Body block need to be
displayed, however.

See the Body Coordinate Systems Controls figure preceding.

Show Port
Select this check box for any Body CS to create a corresponding
Body CS Port on the side of the Body block. The Body CS on
that line in the Body CS list is now accessible for connection to
other blocks.

Clear this check box to remove the Body CS Port corresponding to
that Body CS on that line in the list.

The defaults are not selected for CG, selected for CS1 and CS2.

To apply your choices to the displayed Body block, click Apply.

Port Side
From the pull-down menu, choose which side of the Body block
you want the Body CS Port for that Body CS to be placed on,
Left or Right.

The defaults are Left for CG and CS1 and Right for CS2.

To apply your choices to the displayed Body block, click Apply.

See Also Body Actuator, Body Sensor, Ground, Mechanical Branching Bar

See Chapter 3, “Representing Motion” for more details about
representing body position and orientation.

See “Modeling Bodies and Grounds” on page 4-10, “Creating Body CS
Ports” on page 4-19, and “Starting SimMechanics Visualization” on page
6-2 for more on setting up Bodies in machines.

11-22

Body

See “Modeling Actuators” on page 4-45 for setting general initial
conditions (positions and velocities) of DoFs in a machine.

See the relevant entries in the Glossary: adjoining CS, axis-angle
rotation, body, Body CS, center of gravity (CG), convex hull,
coordinate system (CS), equivalent ellipsoid, Euler angles,
inertia tensor, mass, principal axes, principal inertial moments,
quaternion, right-hand rule, and rotation matrix.

11-23

Body Actuator

Purpose Apply force or torque to body

Library Sensors & Actuators

Description The Body Actuator block actuates a Body block with a generalized force
signal, representing a force/torque applied to the body:

• Force for translational motion

• Torque for rotational motion

The generalized force is a function of time specified by a Simulink
input signal. This signal can be any Simulink signal, including a signal
feedback from a Sensor block.

The Body Actuator applies the actuation signal in the reference
coordinate system (CS) specified in the block dialog.

The inport is the Simulink input signal. The output is the connector
port you connect to the Body block you want to actuate.

Note You should carefully distinguish the Body Actuator from the
Driver blocks:

• The Body Actuator block applies generalized forces to one body in
a specified reference CS.

• The Driver blocks drive relative degrees of freedom between pairs of
bodies.

Other Ways to Actuate Bodies

The Body Actuator block actuates a Body with force/torque signals
only. To actuate a Body with motion signals or initial conditions, or
to drive the relative degrees of freedom between a pair of Bodies, see

11-24

Body Actuator

“Actuating a Joint” on page 4-52 and “Joint Actuator Example: Body
Driver” on page 4-54.

The mech_body_driver model from the Demos library shows how to
drive the relative DoFs between a pair of bodies. To actuate one body
alone, use this model and replace the second Body block with a Ground
block. To set body initial conditions, replace the second Body block with
a Ground block and the Joint Actuators with Joint Initial Condition
Actuators.

Dialog
Box and
Parameters

The dialog has one active area, Actuation.

Actuation With respect to CS
In the pull-down menu, choose the coordinate system (CS) in
which the actuating force/torque is interpreted: either the Local
(Body CS) to which the Actuator is connected or the default
Absolute (World).

Generalized Forces

You can apply a force, a torque, or both generalized forces to a body.

11-25

Body Actuator

If you apply both, you need to bundle the torque and force vectors into a
6-component signal, in the order shown in the dialog.

Applied torque
Select the check box if part or all of the actuating signal is a
rotational torque. The default is not selected. The Simulink
torque input is a 3-component bundled signal.

In the Units pull-down menu, choose units for the actuating
torque. The default is N*m (newton-meters).

Applied force
Select the check box if part or all of the actuating signal is a
translational force. The default is selected. The Simulink force
input is a 3-component bundled signal.

In the Units pull-down menu, choose units for the actuating force.
The default is N (newtons).

Example Here is a Body Actuator connected to a Body:

You must connect the Body Actuator to the Body at one of that Body’s
attached Body CSs, at the corresponding Body CS Port. The actuation
signal acts on the Body at that Body CS’s origin.

11-26

Body Actuator

See Also Body, Body Sensor, Driver Actuator, Joint Actuator, Joint Initial
Condition Actuator, Mechanical Branching Bar

See “Body Motion in SimMechanics” on page 3-4 for more details on
body coordinate system rotations.

See “Actuating a Joint” on page 4-52 and “Joint Actuator Example:
Body Driver” on page 4-54.

See “Machines, Bodies, and Grounds” on page 10-2 and “Constraints
and Drivers” on page 10-5.

In Simulink, see the Signal Routing Library and the Sources Library.

11-27

Body Sensor

Purpose Measure body motion

Library Sensors & Actuators

Description The Body Sensor block senses the motion of a body represented by
a Body block. You connect the Body Sensor to a Body coordinate
system (CS) on the Body whose motion you want to sense. The sensor
specifically measures the motion of the origin of this Body CS.

The Body Sensor measures the components of translational and
rotational motion in any combination of:

• Translational position, velocity, and acceleration vectors. The
position vector has its tail at the World CS origin.

• Rotational orientation (a 3-by-3 rotation matrix R) and angular
velocity and acceleration vectors

In the block dialog, you choose the reference coordinate system (CS)
axes in which these components are represented.

The input is the connector port connected to the Body being sensed. The
outport is a set of Simulink signals or one bundled Simulink signal of
the selected matrix and/or vector components.

Body Position-Orientation and the Home Configuration

The Body Sensor block can measure the position and/or orientation
of a body. It measures these relative to the home configuration of the
machine, the machine state before the application of initial condition
actuators and assembly of disassembled joints. Thus the Body Sensor
includes the effect of the latter, which act before the simulation starts.

Defining Coordinate Representations and Body Orientation

A body’s orientation rotation matrix R relates the components of the
same vector v as measured in the inertial World CS and in the Body
CS by vb = [RT]·vW. The column vector vW lists the vector v’s three
components measured in the World CS. The column vector vb lists the
vector v’s three components measured in the Body CS.

11-28

Body Sensor

The columns of the rotation matrix R are the components of the Body
CS unit basis vectors measured with respect to the World axes.

See “Body Motion in SimMechanics” on page 3-4 and “How
SimMechanics Represents Body Orientation” on page 3-11 for more
details on representing body position and orientation, rotation matrices,
and angular velocity.

Dialog
Box and
Parameters

The dialog has one active area, Measurements.

Measurements With respect to CS
In the pull-down menu, choose the coordinate system in which the
body motion components are represented: either the Local (Body
CS) to which the Sensor is connected or the default Absolute
(World).

11-29

Body Sensor

In the Absolute case, the rotation matrix R and the motion
vectors have components represented in the inertial World CS
axes. In the Local case, the same body motion components are
premultiplied by the body’s inverse orientation rotation matrix
R-1 = RT.

Each vector measurement is a row vector in the Simulink output
signal. The selected signals are ordered in the same sequence
as the dialog.

Select the check box for each of the possible measurements you want
to make:

• Translational motion: Position, Velocity, and Acceleration
vectors: r, v = dr/dt, and a = dv/dt, respectively.

• Rotational motion: Angular velocity and Angular acceleration
vectors and Rotation matrix:

- The Rotation matrix is the 3-by-3 orthogonal rotation matrix R:

R R R
R R R
R R R

11 12 13

21 22 23

31 32 33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

representing rotational orientation and satisfying RTR = RRT = I.
The components are output columnwise as a 9-component row
vector: (R11, R21, R31, R12, ...).

- If you choose the With respect to coordinate system as
Absolute (World, the Rotation matrix measures the body’s
rotational orientation with respect to the World CS. Recall the
relationship of vector components in the World and body coordinate
axes, vW = R]·vb.

- If you choose the With respect to coordinate system as Local
(Body CS), the Rotation matrix returns the 3-by-3 identity
matrix RTR = I.

11-30

Body Sensor

- The angular velocity is ωj = (1/2) ik εijk ik , where the matrix =
+(dR/dt)*RT = -R*(dRT/dt), and ε is the permutation symbol. The
angular acceleration is α = dω/dt.

In the Units pull-down menus, choose the units for each of the
measurements you want:

• Translation: the defaults are m (meters), m/s (meters/second), and
m/s2 (meters/second2), respectively, for Position, Velocity, and
Acceleration.

• Rotation: the defaults are deg/s (degrees/second) and deg/s2

(degrees/second2), respectively, for Angular velocity and Angular
acceleration. The Rotation matrix is dimensionless.

Output selected parameters as one signal
Select this check box to convert the output signals into a single
bundled signal. The default is selected. If you clear it, the Body
Sensor block will grow as many Simulink outports as there are
active signals selected, one port for each selected signal.

If the check box is selected, the Simulink signal out has all the
active (selected) signals ordered into a single row vector, in the
same order you see in the dialog. Nonselected components are
removed from the vector signal.

The sensor outputs are ordered and labeled as follows.

Body Sensor Output Signal Label

Position p

Velocity v

Angular velocity av

Rotation matrix [R]

11-31

Body Sensor

Body Sensor Output Signal Label

Acceleration a

Angular velocity aa

Example Here is a Body Sensor connected to a Body:

You must connect the Body Sensor to the Body at one of its Body CS
ports. The Sensor measures the motion of that Body CS.

11-32

Body Sensor

See Also Body, Body Actuator, Constraint & Driver Sensor, Joint Sensor,
Mechanical Branching Bar

See “Kinematics and the Machine’s State of Motion” on page 3-2,
“Body Motion in SimMechanics” on page 3-4, and “How SimMechanics
Represents Body Orientation” on page 3-11 for more details on
representing body position and orientation.

See “Modeling Sensors” on page 4-63.

See the relevant entries in the Glossary about body orientation:
axis-angle rotation, Euler angles, right-hand rule, and rotation
matrix.

In Simulink, see the Signal Routing Library and the Sinks Library.

11-33

Body Spring & Damper

Purpose Model damped linear oscillator force between two bodies

Library Force Elements

Description The Body Spring & Damper block models the force of a damped spring
acting between two bodies. By Newton’s third law, the spring applies
equal and opposite forces to the two bodies. You can use this Force
Element block to model any linear (Hooke’s law) force with constant
coefficients that acts between a pair of bodies.

You connect a Body Spring & Damper between two Body coordinate
systems (CSs), each on one body. The vector between the Body CSs
defines the direction and length of the spring. One of the Bodies can
be a Ground.

Note The spring and the damper forces act only along the axis
connecting the two Body CSs.

Grounding the Connected Submachines

The Body Spring & Damper block contains a Shared Environment
block. The submachines connected to either side of this block constitute
a single composite machine that requires exactly one Machine
Environment block, but at least one Ground for each submachine.

Referencing Coordinate Systems on the Connected Bodies

The Body Spring & Damper block is not a Joint and cannot propagate
adjoining coordinate systems from a Body on one side to a Body on the
other side.

One Body is connected to one side of the Body Spring & Damper at one
of that Body’s CSs. If you attempt to define that CS in terms of the
adjoining CS (the connected CS of the other Body connected to the other
side), the first Body cannot detect the connected CS of the second body.
If you need to define adjoining CSs on either side of a Body Spring &
Damper, add a Joint block in parallel with the spring-damper.

11-34

Body Spring & Damper

Adding Joints in Parallel to the Body Spring & Damper

Caution The Body Spring & Damper has no degrees of freedom (DoFs).

To represent the DoFs of one body with respect to the other, either

• Connect one or more Joints in series with the Bodies.

• Create additional Body CSs on each body and connect them with a
Joint in parallel with the Body Spring & Damper. To create parallel
grounds, insert additional Ground blocks.

You can add more Joint blocks between the Bodies to represent one,
two, or three prismatic primitives. Use Prismatic blocks or a Custom
Joint block to accomplish this.

Body Spring and Damper Force Law

You connect this block to each Body, A or B, at a Body coordinate system
(CS). If rA and rB are the positions of these Body CSs, the relative
position vector connecting them is r = rB - rA. The distance of separation
is |r|. The relative velocity is v = dr/dt. Then the vector force that
body A exerts on body B is

F r r r v r r r= ⋅− − −k r b(| |)(/| |) ()(/| |)0
2

The first term represents the spring or linear displacement force.
The second represents the damper or velocity dissipation force, which
acts only along the direction of r. Thus the damper is equivalent to a
dashpot, not a viscous medium.

You specify

• The spring constant k. A stable spring requires k > 0.

11-35

Body Spring & Damper

• The natural spring length (offset) r0. The natural length is the length
of the spring with no forces acting on it and physically must be
nonnegative: r0 ≥ 0.

• The damping constant b. A damping representing dissipation and
respecting the second law of thermodynamics requires b ≥ 0. You can
use a negative b to represent energy pumping.

Body Spring and Damper Force in Singular Cases

Caution In certain cases, the force formula breaks down, and
SimMechanics uses special rules to determine the spring-damper force.

To avoid singularities in the initial state of motion, be sure to set the
bodies’ initial conditions of position and velocity to physically sensible
values.

These cases include the following:

• If both r0 and v ≠ 0, and r = 0 at some instant, both terms in the force
become singular. The spring force is reprojected along the velocity
vector. That is, v/|v| replaces r/|r| in both terms of the force law,
once in the first term and twice in the second. If the state r = 0 does
not persist for more than an instant, this replacement has no effect
on the motion.

• If r0 ≠ 0, and both r and v = 0 at some instant, the force direction is
undefined. The simulation stops with an error.

11-36

Body Spring & Damper

Dialog
Box and
Parameters

The dialog has two active areas, Parameters and Units.

Parameters Spring constant (k)
Enter the linear spring force constant k. The default is 0.

The units for k are derived implicitly from your choice of position
and force units.

Damper constant (b)
Enter the linear damping force constant b. The default is 0.

The units for b are derived implicitly from your choice of velocity
and force units.

Spring natural length (r0)
Enter the spring’s natural length (offset) r0. The default is 0.

Units Position
In the pull-down menu, choose units for the relative position
vector r. The default is m (meters).

11-37

Body Spring & Damper

Velocity
In the pull-down menu, choose units for the relative velocity
vector v. The default is m/s (meters/second).

Force
In the pull-down menu, choose units for the spring-damper force
F acting between the bodies. The default is N (newtons).

Example This is a simple but representative use of the Body Spring & Damper.

See Also Body, Body Actuator, Body Sensor, Custom Joint, Ground, Joint Spring
& Damper, Machine Environment, Prismatic, Shared Environment

See “Modeling Force Elements” on page 4-69.

11-38

Bushing

Purpose Represent composite joint with three translational and three rotational
DoFs

Library Joints

Description The Bushing block represents a composite joint with three translational
degrees of freedom (DoFs) as three prismatic primitives and three
rotational DoFs as three revolute primitives. There are no constraints
among the primitives. Unlike Six-DoF, Bushing represents the
rotational DoFs as three revolutes, rather than as one spherical.

Caution A joint with three revolute primitives becomes singular if
two or three of the rotation axes become parallel (“gimbal lock”). A
joint with two or three prismatic primitives becomes singular if two or
three of the translation axes become parallel. The simulation stops
with errors in these cases.

A joint with three revolute primitives must be configured in the initial
state with the three revolute primitive axes mutually orthogonal. There
are no restrictions on the primitive axes once the simulation starts,
except to prevent any two of the primitive axes from becoming parallel.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Bushing block is assembled: the
origins of these Body CSs must lie along the primitive axes, and the
Body CS origins on either side of the Joint must be spatially collocated
points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify reference CSs to define the
directions of the joint axes.

11-39

Bushing

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis. Positive rotation is the follower moving around the
rotational axis following the right-hand rule.

Current base
When you connect the base (B) connector port on the Bushing
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Bushing Base and Follower Body Connector Ports on page 11-41.

11-40

Bushing

The base Body is automatically connected to the first joint
primitive P1 in the primitive list in Parameters.

Current follower
When you connect the follower (F) connector port on the Bushing
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Bushing Base and Follower Body Connector Ports on page 11-41.

The follower Body is automatically connected to the last joint
primitive R3 in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motions of prismatic and revolute primitives are specified in
linear and angular units, respectively.

Bushing Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
Bushing has an entry line. These lines specify the direction of the axes
of action of the DoFs that the Bushing represents.

Name - Primitive
The primitive list states the names and types of joint primitives
that make up the Bushing block: prismatic primitives P1, P2, P3,
and revolute primitives R1, R2, R3.

11-41

Bushing

Axis of Action [x y z]
Enter here as a three-component vector the directional axes
defining the allowed motions of these primitives and their
corresponding DoFs:

• Prismatic: axis of translation

• Revolute: axis of rotation

The default vectors are shown in the dialog above. The axis is a
directed vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the
revolute axes and no two of the prismatic axes can be parallel.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

11-42

Bushing

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Bearing, Cylindrical, Gimbal, Prismatic, Revolute, Six-DoF

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-43

Connection Port

Purpose Create Physical Modeling connector port for subsystem

Library Utilities

Description The Connection Port block, placed inside a subsystem composed of
SimMechanics blocks, creates a SimMechanics open round connector
port on the boundary of the subsystem. Once connected to a
connection line, the Port becomes solid .

You connect individual SimMechanics blocks and subsystems made of
SimMechanics blocks to one another with SimMechanics connection
lines, instead of normal Simulink signal lines. These are anchored
at the open, round connector ports . Subsystems constructed out of
SimMechanics blocks automatically have such open round connector
ports. You can add additional connector ports by adding Connection
Port blocks to your subsystem.

Dialog
Box and
Parameters

Port number
This field labels the subsystem connector port created by this
block. Multiple connector ports on the boundary of a single
subsystem require different numbers as labels. The default value
for the first Port is 1.

Port location on parent subsystem
Choose here on which side of the parent subsystem boundary the
Port is placed. The choices are Left or Right. The default choice
is Left.

11-44

Connection Port

See Also In Simulink, see Creating Subsystems.

11-45

Constraint & Driver Sensor

Purpose Measure constraint force or torque between pair of constrained bodies

Library Sensors & Actuators

Description The Constraint & Driver Sensor block measures the force/torque of
constraint (reaction force/torque) between a pair of bodies. You connect
this block to the Constraint or Driver block connected between the two
Bodies. The output signal is the reaction force/torque.

The Constraint & Driver Sensor measures the reaction force/torque in
the reference coordinate system (CS) specified in the block dialog. The
Constraint or Driver block connects a base and a follower Body. You
choose in the dialog to measure the reaction force/torque on either the
base or the follower Body.

The input is the connector port connected to the Constraint or Driver
block you want to sense. The outport is a set of Simulink signals or one
bundled Simulink signal of the reaction force/torque vector(s).

Physical and Unphysical Reaction Forces Not all the components
of the output reaction force/torque signal are significant. Only those
components projected into the subspace of the degrees of freedom
constrained or driven by the connected Constraint or Driver block are
physical. Components orthogonal to the constrained or driven degrees
of freedom are unphysical.

A body’s orientation rotation matrix R relates vector components
measured in the body CS and in the inertial World CS by [R]·vb = vs.
The column vector vb lists the vector v’s three components measured in
the body CS. The column vector vs lists the vector v’s three components
measured in the World CS.

11-46

Constraint & Driver Sensor

Dialog
Box and
Parameters

The dialog has one active area, Measurements.

Measurements Reactions measured on
In the pull-down menu, choose to measure the reaction
force/torque on the base (B) or follower (F) Body. The default is
Base.

With respect to CS
In the pull-down menu, choose the CS in which the reaction
force/torque or motion is interpreted. The default is Absolute
(World).

In the Absolute case, the force vectors have components measured
relative to the inertial World CS axes. In the Local case, the same
force vector signals are premultiplied by the inverse rotation
matrix R-1 = RT for the Body selected in Reactions measured on.

Reaction torque
Select the check box if you want to measure the reaction torque.
The default is selected. The torque is a row vector in the Simulink
output signal.

11-47

Constraint & Driver Sensor

In the pull-down menu, choose the units for the reaction torque.
The default is N*m (newton-meters).

Reaction force
Select the check box if you want to measure the reaction force.
The default is selected. The force is a row vector in the Simulink
output signal.

In the pull-down menu, choose the units for the reaction force.
The default is N (newtons).

Output selected parameters as one signal
Select this check box to convert the output signals into a single
bundled signal. The default is selected. If you clear it, the
Constraint & Driver Sensor block will grow as many Simulink
outports as there are active signals selected, one port for each
selected signal.

If the check box is selected, the Simulink signal out has all the
active signals bundled into a single row vector, ordered in the
order shown in the dialog. The type of the signal components
depends on which measurements are active (selected).

The sensor outputs are ordered and labeled as follows.

Constraint & Driver Sensor Output Signal Label

Reaction torque Tr

Reaction force Fr

Example Here is a Constraint & Driver Sensor connected to a Gear Constraint,
which connects and constraints two Bodies:

11-48

Constraint & Driver Sensor

You must add a Sensor port (connector port) to the Constraint/Driver
block to connect the Constraint & Driver Sensor to it. The base
(B)-follower (F) Body sequence on the two sides of the Joint determines
the sense of the Constraint & Driver Sensor data.

See Also Body Sensor, Driver Actuator, Joint Sensor, Mechanical Branching Bar

See “Body Motion in SimMechanics” on page 3-4 and “Modeling
Sensors” on page 4-63.

In Simulink, see the Signal Routing Library and the Sinks Library.

11-49

Continuous Angle

Purpose Convert discontinuous, bounded angular output from sensor to
continuous, unbounded angular output

Library Utilities

Description The Continuous Angle block converts a measured angle signal restricted
to the semiopen interval (-180o, +180o] degrees or (-π,+π] radians to
a continuous, unbounded angle not restricted to any interval. This
block requires the angle and the angular velocity as input signals. The
continuous, unbounded angle is the output signal.

Caution Each Continuous Angle block in a model adds an additional
Simulink state to the model. Use this block with caution if you are
trimming or linearizing your model.

The Continuous Angle block does not add additional mechanical states.

The Joint Sensor block outputs the absolute rotational measurement of
revolute motion as a bounded angle in the interval (-180o, +180o] degrees
or (-π,+π] radians. Motion that crosses the boundaries of this interval
causes discontinuities in the measured angle, from +180o to -180o or
vice versa. Use the Continuous Angle block if you want to convert this
restricted angular measurement to an unbounded measurement.

Dialog
Box and
Parameters

11-50

Continuous Angle

The dialog has one active area, Parameters.

Parameters Angle measured in
Choose the units for the input angle and the output continuous
angle, either deg (degrees) or rad (radians). The default is deg.

Rate measured in
Choose the units for the input rate (angular velocity), either deg/s
(degrees/second) or rad/s (radians/second). The default is deg/s

Example The tutorial “Four Bar Mechanism” produces this angular motion
output for the Revolute3 and Revolute 2 joints:

The Revolute3 angle is restricted to the interval (-180o, +180o], so values
passing either limit of this interval are mapped to the opposite end of

11-51

Continuous Angle

the interval. The Revolute2 angle is not restricted, but instead touches
genuine turning points in its motion.

After passing the angles and angular velocities through Continuous
Angle blocks, the Revolute3 angular motion appears different:

Revolute3’s motion is unchanged, but its angle is now continuous, with
no interval restriction. Revolute2’s angle is unchanged.

See Also Joint Sensor

See “Trimming Mechanical Models” on page 8-18 and “Linearizing
Mechanical Models” on page 8-32 for more about states.

See “Utilities” on page 10-6.

11-52

Custom Joint

Purpose Represent customizable composite joint with up to three translational
and up to three rotational degrees of freedom

Library Joints

Description The Custom Joint block is a composite joint that you can customize with
a specified combination of primitives (prismatic, revolute, or spherical)
representing the most general and unconstrained degrees of freedom
(DoFs) in three dimensions:

• Up to three translational DoFs as three prismatic primitives

• Up to three rotational DoFs:

- As a single spherical primitive

- As one, two, or three revolute primitives

The sense of rotational DoFs is defined by the right-hand rule. One
spherical or three revolutes together form a right-handed system.

You can add, configure, and delete these primitives from the Custom
Joint, with a minimum and default of one primitive. The properties of
each primitive are the same as the individual Joints of the same names.

Caution A joint with two or three revolute primitives becomes singular
if two or three of the rotation axes become parallel (“gimbal lock”). A
joint with two or three prismatic primitives becomes singular if two or
three of the translation axes become parallel. The simulation stops
with errors in these cases.

A joint with three revolute primitives must be configured in the initial
state with the three revolute primitive axes mutually orthogonal. There
are no restrictions on the primitive axes once the simulation starts,
except to prevent any two of the primitive axes from becoming parallel.

11-53

Custom Joint

The Custom Joint block’s primitives are assembled: you must connect
each side of the Joint block to a Body block at a Body coordinate
system (CS) point, and the origins of these Body CSs must be spatially
collocated points, within assembly tolerances..

You can connect Actuator and Sensor blocks to a Custom Joint, with
each Actuator and Sensor connecting to an individual primitive. You
cannot connect an Actuator to a spherical primitive.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

Any Joint block represents only the abstract relative motion of two
bodies, not the bodies themselves. You must specify a reference CS to
define the direction of the joint axes.

11-54

Custom Joint

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of
positive motion:

• Positive translation is the follower moving in the direction of the
translation axis.

• Positive rotation is the follower rotating in the right-hand rule about
the rotation axis.

• Positive rotation is the follower rotating in the right-hand rule as
shown by the motion figure in the Spherical block reference page.

11-55

Custom Joint

Current base
When you connect the base (B) connector port on the Custom Joint
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure, Custom
Joint Base and Follower Body Connector Ports on page 11-56.

The base Body is automatically connected to the first joint
primitive in the primitive list in Parameters.

Current follower
When you connect the follower (F) connector port on the Custom
Joint block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Custom Joint Base and Follower Body Connector Ports
on page 11-56.

The follower Body is automatically connected to the last joint
primitive in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0. A spherical primitive
cannot be connected to an Actuator.

The motion of a prismatic primitive is specified in linear units.
The motion of a revolute primitive is specified in angular units.
The motion of a spherical primitive is three DoFs specified in
quaternion form.

Custom Joint Base and Follower Body Connector Ports

11-56

Custom Joint

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
Custom Joint has an entry line. These lines specify the direction of the
axes of action of the DoFs that the Custom Joint represents.

Name - Primitive
In the pull-down menu, select a label and primitive type for this
DoF. Up to three prismatic primitives P1, P2, P3 are allowed.
The rotational DoFs are represented by up to three revolute
primitives: R1, R2, R3. A spherical primitive S can take all three
allowed rotational DoFs instead.

The default value is R1 - Revolute.

Axis of Action [x y z]
Enter here as a three-component vector the directional axis
defining the allowed motion of this primitive and its corresponding
DoF:

• Prismatic: axis of translation

• Revolute: axis of rotation

• Spherical: field is not active

The default vector is [0 0 1]. The axis is a directed vector whose
overall sign matters.

11-57

Custom Joint

To prevent singularities and simulation errors, no two of the
revolute axes and no two of the prismatic axes can be parallel.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

The field is not active for a spherical primitive.

Managing the Joint Primitives List in a Custom Joint

The Custom Joint primitives list controls (see the following figure,
Custom Joint Primitives List Controls on page 11-59) allow you to add,
reorder, and delete joint primitives in a Custom Joint block:

• To add a joint primitive to the primitives list:

- Highlight an existing primitive name in the list.

- Click on the Add button (see the following figure, Custom Joint
Primitives List Controls).

A new primitive will appear immediately below the primitive you
highlighted.

• To change the position of a joint primitive in the list:

- Highlight the primitive whose position you want to change.

- Click on the Up or Down button (see the following figure, Custom
Joint Primitives List Controls) until the primitive is where you
want it.

• To delete a joint primitive from the list:

- Highlight the primitive you want to delete.

- Click on the Delete button (see the following figure, Custom Joint
Primitives List Controls).

11-58

Custom Joint

The primitive you highlighted disappears.

• Custom Joint requires at least one primitive, which you cannot delete.

Custom Joint Primitives List Controls

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

11-59

Custom Joint

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Bushing, Gimbal, Joint Actuator, Joint Initial Condition Actuator, Joint
Sensor, Joint Stiction Actuator, Prismatic, Revolute, Six-DoF, Spherical

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-60

Cylindrical

Purpose Represent composite joint with one translational DoF and one rotational
DoF, with parallel translation and rotation axes

Library Joints

Description The Cylindrical block represents a composite joint with one translational
degrees of freedom (DoF) as one prismatic primitive and one rotational
DoF as one revolute primitive. The translation and rotation axes must
be parallel.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Cylindrical block is assembled: the
origins of these Body CSs must lie along the primitive axes, and the
Body CS origins on either side of the Joint must be spatially collocated
points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify reference CSs to define the
directions of the joint axes.

11-61

Cylindrical

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis. Positive rotation is the follower moving around the
rotational axis following the right-hand rule.

Current base
When you connect the base (B) connector port on the Cylindrical
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Cylindrical Base and Follower Body Connector Ports.

The base Body is automatically connected to the first joint
primitive P1 in the primitive list in Parameters.

11-62

Cylindrical

Current follower
When you connect the follower (F) connector port on the
Cylindrical block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Cylindrical Base and Follower Body Connector Ports.

The follower Body is automatically connected to the last joint
primitive R1 in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motions of prismatic and revolute primitives are specified in
linear and angular units, respectively.

Cylindrical Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
Cylindrical has an entry line. These lines specify the direction of the
axes of action of the DoFs that the Cylindrical represents.

Name - Primitive
The primitive list states the names and types of joint primitives
that make up the Cylindrical block: prismatic revolute P1 and
revolute primitive R1.

11-63

Cylindrical

Axis of Action [x y z]
Enter here as a three-component vector the directional axes
defining the allowed motions of these primitives and their
corresponding DoFs:

• Prismatic: axis of translation

• Revolute: axis of rotation

The default vectors are shown in the dialog above. The axes are
directed vectors whose overall sign matters.

The two axes P1 and R1 in Cylindrical must be aligned.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

11-64

Cylindrical

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Disassembled Cylindrical, Prismatic, Revolute, Screw

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-65

Disassembled Cylindrical

Purpose Represent disassembled cylindrical joint, with one translational DoF
and one rotational DoF along and about misaligned axes, with no
constraints

Library Joints/Disassembled Joints

Description The Disassembled Cylindrical block represents a composite joint,
one translational and one rotational degrees of freedom (DoF) along
and about a pair of specified misaligned axes between two bodies.
SimMechanics automatically assembles (aligns) the two axes at
simulation start when it defines a machine’s assembled.

A cylindrical joint is composite, with two DoFs and a single specified
axis: a prismatic primitive translating along the axis, and a revolute
primitive rotating about the axis. There are no constraints between
the two primitives.

This block is disassembled: you must connect each side of the Joint
block to a Body block at a Body coordinate system (CS) point, but the
origins of these Body CSs do not need to be spatially collocated points or
lie along a joint axis.

You must connect any Joint block to two and only two Body blocks, and
Joints have a default of two connector ports for connecting to base and
follower Bodies. The disassembled translation-rotation joint axes are
associated with the base and follower Bodies, respectively.

You can only use a Disassembled Joint block to close a loop. One loop
must have no more than one disassembled joint. You cannot connect an
Actuator or Sensor to a Disassembled Joint.

11-66

Disassembled Cylindrical

Disassembled Cylindrical Axes of Follower (blue) and Base (red)

Dialog
Box and
Parameters

11-67

Disassembled Cylindrical

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

Current base
When you connect the base (B) connector port on the Disassembled
Cylindrical block to a Body CS Port on a Body, this parameter
is automatically reset to the name of this Body CS. See the
following figure, Disassembled Cylindrical Base and Follower
Body Connector Ports on page 11-68.

Current follower
When you connect the follower (F) connector port on the
Disassembled Cylindrical block to a Body CS Port on a Body, this
parameter is automatically reset to the name of this Body CS. See
the following figure, Disassembled Cylindrical Base and Follower
Body Connector Ports on page 11-68.

Disassembled Cylindrical Base and Follower Body Connector Ports

Parameters There is one Axes panel.

The entries on the Axes pane are required. They specify the directions
of the two misaligned axes of the translational-rotational DoFs that the
Disassembled Cylindrical represents.

11-68

Disassembled Cylindrical

Name
This column automatically displays the names of the two
misaligned rotation axes attached to base and follower bodies,
respectively.

Axis of Action [x y z]
Enter here as two three-component vectors the two misaligned
directional axes along and about which the base and follower
bodies respectively can translate and rotate. The default vectors
are [1 0 0] and [0 1 0], respectively. The axes are directed
vectors whose overall signs matter.

Reference CS
Using the pull-down menu, choose the coordinate systems (World,
the base Body CS, or the follower Body CS) whose coordinate
axes the two vector axes of translation-rotation are oriented with
respect to. The defaults are World.

See Also Cylindrical, Disassembled Prismatic, Disassembled Revolute,
Disassembled Spherical

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Disassembled Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting disassembled
joints.

11-69

Disassembled Prismatic

Purpose Represent disassembled prismatic joint with one translational degree
of freedom along misaligned axes

Library Joints/Disassembled Joints

Description The Disassembled Prismatic block represents a single translational
degrees of freedom (DoF) along a pair of specified misaligned axes
between two bodies. SimMechanics automatically assembles (aligns)
the translation axes at simulation start when it defines a machine’s
assembled configuration.

This block is disassembled: you must connect each side of the Joint
block to a Body block at a Body coordinate system (CS) point, but the
origins of these Body CSs do not have to lie along a joint axis. As with
the Prismatic Joint, these Body CS origins do not need to be spatially
collocated points either.

You must connect any Joint block to two and only two Body blocks, and
Joints have a default of two connector ports for connecting to base and
follower Bodies. The disassembled joint axes are associated with the
base and follower Bodies, respectively.

You can only use a disassembled Joint block to close a loop. One loop
must have no more than one disassembled joint. You cannot connect an
Actuator or Sensor to a Disassembled Joint.

11-70

Disassembled Prismatic

Disassembled Prismatic Axes of Follower (blue) and Base (red)

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

11-71

Disassembled Prismatic

Connection
Parameters

Current base
When you connect the base (B) connector port on the Disassembled
Prismatic block to a Body CS Port on a Body, this parameter
is automatically reset to the name of this Body CS. See the
following figure, Disassembled Prismatic Base and Follower Body
Connector Ports on page 11-72.

Current follower
When you connect the follower (F) connector port on the
Disassembled Prismatic block to a Body CS Port on a Body, this
parameter is automatically reset to the name of this Body CS. See
the following figure, Disassembled Prismatic Base and Follower
Body Connector Ports on page 11-72.

Disassembled Prismatic Base and Follower Body Connector Ports

Parameters There is one Axes panel.

The entries on the Axes pane are required. They specify the
directions of the two misaligned axes of the translational DoF that the
Disassembled Prismatic represents.

11-72

Disassembled Prismatic

Name
This column automatically displays the names of the two
misaligned translation axes attached to base and follower bodies,
respectively.

Axis of translation [x y z]
Enter here as two three-component vectors the two misaligned
directional axes along which the base and follower bodies
respectively can translate. The default vectors are [1 0 0] and
[0 1 0], respectively. The axes are directed vectors whose overall
signs matter.

Reference CS
Using the pull-down menu, choose the coordinate systems (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the two vector axes of translation are oriented with respect to.
The defaults are World.

See Also Disassembled Cylindrical, Disassembled Revolute, Disassembled
Spherical, Prismatic

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Disassembled Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closing loops with disassembled joints.

11-73

Disassembled Revolute

Purpose Represent disassembled revolute joint with one rotational degree of
freedom about misaligned axes

Library Joints/Disassembled Joints

Description The Disassembled Revolute block represents a single rotational degrees
of freedom (DoF) along a pair of specified misaligned axes between two
bodies. SimMechanics automatically assembles (aligns) the rotation
axes at simulation start when it defines a machine’s assembled.

This block is disassembled: you must connect each side of the Joint
block to a Body block at a Body coordinate system (CS) point, but the
origins of these Body CSs do not need to be spatially collocated points or
lie along a joint axis.

You must connect any Joint block to two and only two Body blocks, and
Joints have a default of two connector ports for connecting to base and
follower Bodies. The disassembled joint axes are associated with the
base and follower Bodies, respectively.

You can only use a disassembled Joint block to close a loop. One loop
must have no more than one disassembled joint. You cannot connect an
Actuator or Sensor to a Disassembled Joint.

11-74

Disassembled Revolute

Disassembled Revolute Axes of Follower (blue) and Base (red)

Dialog
Box and
Parameters

11-75

Disassembled Revolute

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

Current base
When you connect the base (B) connector port on the Disassembled
Revolute block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Disassembled Revolute Base and Follower Body Connector
Ports on page 11-76.

Current follower
When you connect the follower (F) connector port on the
Disassembled Revolute block to a Body CS Port on a Body, this
parameter is automatically reset to the name of this Body CS. See
the following figure, Disassembled Revolute Base and Follower
Body Connector Ports on page 11-76.

Disassembled Revolute Base and Follower Body Connector Ports

Parameters There is one Axes panel.

The entries on the Axes pane are required. They specify the directions
of the two misaligned axes of the rotational DoF that the Disassembled
Revolute represents.

11-76

Disassembled Revolute

Name
This column automatically displays the names of the two
misaligned rotation axes attached to base and follower bodies,
respectively.

Axis of rotation [x y z]
Enter here as two three-component vectors the two misaligned
directional axes about which the base and follower bodies
respectively can rotate. The default vectors are [1 0 0] and [0
1 0], respectively. The axes are directed vectors whose overall
signs matter.

Reference CS
Using the pull-down menu, choose the coordinate systems (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the two vector axes of rotation are oriented with respect to. The
defaults are World.

See Also Disassembled Cylindrical, Disassembled Prismatic, Disassembled
Spherical, Revolute

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Disassembled Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closing loops with disassembled joints.

11-77

Disassembled Spherical

Purpose Represent disassembled spherical joint with three rotational degrees of
freedom about dislocated pivots

Library Joints/Disassembled Joints

Description The Disassembled Spherical block represents three rotational degrees
of freedom (DoF) about a pair of specified dislocated pivots at the two
bodies, separated “ball-in-socket” joints. SimMechanics automatically
assembles (collocates) the spherical pivots at simulation start when it
defines a machine’s assembled configuration.

Two rotational DoFs specify a directional axis, and a third rotational
DoF specifies rotation about that directional axis. (See the motion figure
in the Spherical block reference page.) The sense of each rotational
DoF is defined by the right-hand rule. Unlike the Gimbal block, the
Disassembled Spherical block cannot become singular.

This block is disassembled: you must connect each side of the Joint
block to a Body block at a Body coordinate system (CS) point, but the
origins of these Body CSs (the dislocated pivots) do not need to be
spatially collocated points.

You must connect any Joint block to two and only two Body blocks, and
Joints have a default of two connector ports for connecting to base and
follower Bodies. The disassembled joint pivots are associated with the
base and follower Bodies, respectively.

You can only use a disassembled Joint block to close a loop. One loop
must have no more than one disassembled joint. You cannot connect an
Actuator or Sensor to a Disassembled Joint.

11-78

Disassembled Spherical

Disassembled Spherical Pivots of Follower (blue) and Base (red)

Dialog
Box and
Parameters

The dialog has one area, Connection parameters, which is inactive.

Connection
Parameters

Current base
When you connect the base (B) connector port on the Disassembled
Spherical block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Disassembled Spherical Base and Follower Body Connector
Ports on page 11-80.

11-79

Disassembled Spherical

Current follower
When you connect the base (F) connector port on the Disassembled
Spherical block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Disassembled Spherical Base and Follower Body Connector
Ports on page 11-80.

Disassembled Spherical Base and Follower Body Connector Ports

See Also Disassembled Cylindrical, Disassembled Prismatic, Disassembled
Revolute, Gimbal, Spherical

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Disassembled Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closing loops with disassembled joints.

11-80

Distance Driver

Purpose Specify distance between two Body CS origins as function of time

Library Constraints & Drivers

Description The Distance Driver block drives the distance between the origins of
two Body coordinate system (CS) as a function of time that you specify.
This function must always remain nonnegative during the simulation.

Let r1, r2 be the vector positions of the origins of CS1 on one Body and
CS2 on the other Body, respectively. These vectors can be measured in
any CS. The Distance Driver specifies the scalar distance d = |r1 - r2|
between these points as a function of time:

| | () ()r r1 2 0 − = = +d t f t

You connect the Distance Driver to a Driver Actuator block.

The Simulink input signal into the Driver Actuator specifies the
time-dependent driving function f(t) and its first two derivatives, as well
as their units. If you do not actuate Distance Driver, this block acts as a
time-independent constraint that freezes the distance between the two
Body CSs at its initial value d(t=0) during the simulation.

Drivers restrict relative degrees of freedom (DoFs) between a pair of
bodies as specified functions of time. Locally in a machine, they replace
a Joint as the expression of the DoFs. Globally, Driver blocks must occur
topologically in closed loops. Like Bodies connected to a Joint, the two
Bodies connected to a Drivers are ordered as base and follower, fixing
the direction of relative motion.

You can also connect a Constraint & Driver Sensor to any Driver and
measure the reaction forces/torques between the driven bodies.

11-81

Distance Driver

Dialog
Box and
Parameters

The dialog has one active area, Connection parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis.

Current base
When you connect the base (B) connector port on the Distance
Driver block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Distance Driver Base and Follower Body Connector Ports
on page 11-83.

Current follower
When you connect the follower (F) connector port on the Distance
Driver block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Distance Driver Base and Follower Body Connector Ports
on page 11-83.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Driver Actuator and
Constraint & Driver Sensor blocks to this Driver. The default is 0.

11-82

Distance Driver

To activate the Driver, connect a Driver Actuator.

Distance Driver Base and Follower Body Connector Ports

See Also Constraint & Driver Sensor, Driver Actuator, Linear Driver, Weld

See “Modeling Constraints and Drivers” on page 4-38 for more on
restricting DoFs with Drivers.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on using drivers in closed loops.

See “Constraints and Drivers” on page 10-5.

11-83

Driver Actuator

Purpose Apply relative motion between a pair of constrained bodies through
driver

Library Sensors & Actuators

Description The Driver Actuator block actuates a Driver block connected between
a pair of bodies. You connect the block to the Driver block connected
between the Bodies. The Driver block represents a time-dependent
(rheonomic) constraint on a relative degrees of freedom (DoF) between
the two bodies. A Driver requires a time-dependent function to specify
the relative position, velocity, and acceleration of the connected Bodies.
The output of the Driver Actuator is this time-dependent function f(t)
and its first two derivatives.

You specify these three functions as a bundled Simulink input signal.
This signal can be any Simulink signal, including a signal feedback
from a Sensor block, satisfying these conditions:

• The signal must consist of three bundled components.

- Exception: The Velocity Driver requires two bundled components.

• The three components must be ordered [f(t), df(t)/dt, d2f(t)/dt2].

- Exception: The Velocity Driver requires a function and its
derivative [f(t), df(t)/dt].

• Each successive signal component must be the time derivative of
the previous component.

• The specific meaning of f(t) depends on the connected Driver block
being actuated. Select the specific Driver block for details.

Linear Motions Angular Motions

Distance Driver Angle Driver

Linear Driver

Velocity Driver

11-84

Driver Actuator

The Driver connects a base (B) and a follower (F) Body. The
base-follower sequence determines the sense of the actuation signal.
The inport is the Simulink input signal. The output is the follower you
connect to the Driver block you want to actuate.

Note You do not have to connect a Driver Actuator to a Driver block. If
you do not actuate a Driver, the Driver block acts as a time-independent
constraint that freezes the driven relative DoF between the Bodies at
its initial value during the simulation.

Dialog
Box and
Parameters

The dialog has one active area, Actuation. The block parameters are
not displayed unless you connect it to a specific Driver block.

Actuation The block dialog parameters depend on the specific Driver block to
which you have connected it.

Driving Linear Motion

11-85

Driver Actuator

Position units
In the pull-down menu, choose the units of the actuating f(t)
you apply to the relative motion of the bodies. The default is
m (meters).

Velocity units
In the pull-down menu, choose the units of the actuating df(t)/dt
you apply to the relative motion of the bodies. The default is m/s
(meters/second).

Acceleration units
In the pull-down menu, choose the units of the actuating d2f(t)/dt2

you apply to the relative motion of the bodies. The default is m/s2

(meters/second2).

Driving Angular Motion

Angular units
In the pull-down menu, choose the units of the actuating f(t) you
apply to the relative motion of the bodies. The default is deg
(degrees).

Angular velocity units
In the pull-down menu, choose the units of the actuating df(t)/dt
you apply to the relative motion of the bodies. The default is
deg/s (degrees/second).

Angular acceleration units
In the pull-down menu, choose the units of the actuating d2f(t)/dt2

you apply to the relative motion of the bodies. The default is
deg/s2 (degrees/second2).

Example Here is a Driver Actuator connected to a Distance Driver, which
connects two Bodies:

11-86

Driver Actuator

You must add an Actuator port (connector port) to the Driver block
to connect the Driver Actuator to it. The base (B)-follower (F) Body
sequence on the two sides of the Driver determines the sense of the
Driver Actuator data.

The Driver Actuator drives the relative motion between the two Bodies
connected to the Driver. The nature of the connected Driver block
determines the exact meaning of the actuation data, including the
choice of units.

See Also Body Actuator, Constraint & Driver Sensor, Joint Actuator, Mechanical
Branching Bar

See “Constraints and Drivers” on page 10-5.

In Simulink, see the Signal Routing Library and the Sources Library.

11-87

Gear Constraint

Purpose Constrain rotational motion of two bodies to move along tangent pitch
circles

Library Constraints & Drivers

Description The two Bodies connected by a Gear Constraint block are each restricted
to turn relative to another along pitch circles centered at each body. The
pitch circle centers are the origins of the Body coordinate systems (CSs)
at which the Gear Constraint block is connected on either side. The
pitch circles are tangent at one contact point.

Let r1, r2 be the radius vectors of the two pitch circles and ω1, ω2 the
angular velocity vectors of the two bodies. The Gear Constraint requires
that:

ωω ωω1 1 2 2 x xr r=

You specify the scalar radii r1, r2 of the pitch circles.

You must also connect the two Bodies connected by a Gear Constraint
to a third, carrier Body by Revolute or Cylindrical Joints. (The third
carrier body can be ground, but you must use two Ground blocks in
this case, because a Ground has only one Body CS port. Both Grounds
represent the same immobile body.) The constrained pair of Bodies
rotate relative to one another about distinct rotational axes defined by
the angular velocity vectors ω1, ω2. These axes do not have to be parallel.

Constraints restrict relative degrees of freedom (DoFs) between a pair
of bodies. Locally in a machine, they replace a Joint as the expression of
the DoFs. Globally, Constraint blocks must occur topologically in closed
loops. Like Bodies connected to a Joint, the two Bodies connected to
a Constraint are ordered as base and follower, fixing the direction of
relative motion.

You can connect a Constraint & Driver Sensor to a Constraint block, but
not a Driver Actuator. The Constraint & Driver Sensor measures the
reaction forces/torques between the constrained bodies.

11-88

Gear Constraint

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower rotating in the right-handed
sense about the rotation axis.

Current base
When you connect the base (B) connector port on the Gear
Constraint block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Gear Constraint Base and Follower Body Connector Ports
on page 11-90.

Current follower
When you connect the follower (F) connector port on the Gear
Constraint block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Gear Constraint Base and Follower Body Connector Ports
on page 11-90.

11-89

Gear Constraint

Number of sensor ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Constraint & Driver Sensor
blocks to this Constraint. The default is 0.

Gear Constraint Base and Follower Body Connector Ports

Parameters Base pitch circle radius
Enter a radius for the pitch circle centered at base Body CS. In
the pull-down menu to the right, select units. The defaults are
1 and m (meters), respectively.

Follower pitch circle radius
Enter a radius for the pitch circle centered at follower Body CS.
In the pull-down menu to the right, select units. The defaults are
1 and m (meters), respectively.

11-90

Gear Constraint

Example A simple example of a valid part of a model with a Gear Constraint:

The Body CS origins CS2@Body1 and CS1@Body2 must be separated
and oriented in such a way that the gear pitch circles are in contact
and tangent at one point.

See Also Body, Constraint & Driver Sensor, Cylindrical, Ground, Revolute

See “Modeling Constraints and Drivers” on page 4-38 for more on
restricting DoFs with Constraints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on using constraints in closed loops.

See “Constraints and Drivers” on page 10-5.

11-91

Gimbal

Purpose Represent composite joint with three rotational DoFs

Library Joints

Description The Gimbal block represents a composite joint with three rotational
degrees of freedom (DoFs) as three revolute primitives. There are no
constraints among the primitives.

Caution A joint with three revolute primitives becomes singular if
two or three of the rotation axes become parallel (“gimbal lock”). The
simulation stops with an error in this case.

A joint with three revolute primitives must be configured in the initial
state with the three revolute primitive axes mutually orthogonal. There
are no restrictions on the primitive axes once the simulation starts,
except to prevent any two of the primitive axes from becoming parallel.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Gimbal block is assembled: the
origins of these Body CSs must lie along the primitive axes, and the
Body CS origins on either side of the Joint must be spatially collocated
points, to within assembly tolerances

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify reference CSs to define the
directions of the joint axes.

11-92

Gimbal

11-93

Gimbal

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower moving around the rotational
axis following the right-hand rule.

Current base
When you connect the base (B) connector port on the Gimbal block
to a Body CS Port on a Body, this parameter is automatically reset
to the name of this Body CS. See the following figure, Gimbal
Base and Follower Body Connector Ports on page 11-95.

The base Body is automatically connected to the first joint
primitive R1 in the primitive list in Parameters.

11-94

Gimbal

Current follower
When you connect the follower (F) connector port on the Gimbal
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure, Gimbal
Base and Follower Body Connector Ports on page 11-95.

The follower Body is automatically connected to the last joint
primitive R3 in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motion of revolute primitives is specified in angular units.

Gimbal Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
Gimbal has an entry line. These lines specify the direction of the axes of
action of the DoFs that the Gimbal represents.

Name - Primitive
The primitive list states the names and types of joint primitives
that make up the Gimbal block: revolute primitives R1, R2, R3.

Axis of Action [x y z]
Enter here as a three-component vector the directional axes
defining the allowed motions of these primitives and their
corresponding DoFs:

• Revolute: axis of rotation

11-95

Gimbal

The default vectors are shown in the dialog above. The axis is a
directed vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the
revolute axes can be parallel.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Revolute, Spherical

11-96

Gimbal

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-97

Ground

Purpose Represent immobile point at rest in World

Library Bodies

Description A Ground block represents an immobile ground point at rest in the
absolute inertial World reference frame. Connecting it to a Joint
prevents one side of that Joint from moving. You can also connect a
Ground block to a Machine Environment block.

Note Every valid SimMechanics machine must have at least one
Ground block.

You must connect exactly one Ground block in each machine of your
model to a Machine Environment block.

Ground is a type of Body, but you can connect only one side of a Ground
to a Joint block. A Ground block automatically carries a grounded
coordinate system (CS). This Grounded CS is inertial, at rest in the
World reference frame, with coordinate axes parallel to the World axes:

+x points right

+y points up (gravity in -y direction)

+z points out of the screen, in three dimensions

But a Ground’s origin is the ground point, which in general is shifted
with respect to the World origin.

Multiple Ground blocks represent different fixed points in the global
inertial World. In the topology of a machine model, multiple Ground
blocks function as a single body.

You cannot connect a Sensor or Actuator to a Ground block, because
the ground point cannot be moved.

11-98

Ground

Dialog
Box and
Parameters

Location [x,y,z]
Enter the position of the ground point translated from the origin
of the World CS. The position is specified as a translation vector
(x,y,z), with components projected onto the fixed World CS axes.
Set the Ground position units using the pull-down menu to the
right. The defaults are [0 0 0] and m (meters).

Show Machine Environment port
Select to enable the Machine Environment port on the Ground
block. This port allows you to connect a Machine Environment
block to the Ground and the machine that the Ground is a part
of. The default is not selected.

A Ground Without and With a Connected Machine Environment
Block

Configuring
the
Mechanical
Environment

If you connect a Machine Environment block to a Ground, you can
adjust the mechanical environment for the machine of which that
Ground is a part. Consult the Machine Environment block reference.

11-99

Ground

See Also Body, Machine Environment, Shared Environment

See “Modeling Machines” on page 4-3, “Modeling Bodies and Grounds”
on page 4-10, and “Modeling Joints” on page 4-20 for more on creating
valid SimMechanics models and setting up Grounds.

See the relevant entries in the Glossary: ground, grounded CS,
machine, and World.

11-100

In-Plane

Purpose Represent composite joint with two translational DoFs

Library Joints

Description The In-Plane block represents a composite joint with two translational
degrees of freedom (DoFs) as two prismatic primitives. There are no
constraints among the primitives.

Caution A joint with two prismatic primitives becomes singular if the
two translation axes become parallel. The simulation stops with an
error in this case.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The In-Plane block is assembled: the
origins of these Body CSs must lie along the primitive axes, within
assembly tolerancesBut the Body CS origins on either side of the Joint
do not have to be spatially collocated points.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify reference CSs to define the
directions of the joint axes.

11-101

In-Plane

Dialog
Box and
Parameters

11-102

In-Plane

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis.

Current base
When you connect the base (B) connector port on the In-Plane
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
In-Plane Base and Follower Body Connector Ports on page 11-103.

The base Body is automatically connected to the first joint
primitive P1 in the primitive list in Parameters.

Current follower
When you connect the follower (F) connector port on the In-Plane
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
In-Plane Base and Follower Body Connector Ports on page 11-103.

The follower Body is automatically connected to the last joint
primitive P2 in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motion of prismatic primitives is specified in linear units.

In-Plane Base and Follower Body Connector Ports

11-103

In-Plane

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
In-Plane has an entry line. These lines specify the direction of the axes
of action of the DoFs that the In-Plane represents.

Name - Primitive
The primitive list states the names and types of joint primitives
that make up the In-Plane block: prismatic primitives P1, P2.

Axis of Action [x y z]
Enter here as a three-component vector the directional axes
defining the allowed motions of these primitives and their
corresponding DoFs:

• Prismatic: axis of translation

The default vectors are shown in the dialog above. The axis is a
directed vector whose overall sign matters.

To prevent singularities and simulation errors, the two prismatic
axes cannot be parallel.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

11-104

In-Plane

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Planar, Prismatic

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-105

Joint Actuator

Purpose Apply force, torque, or motion to joint primitive

Library Sensors & Actuators

Description A joint between two bodies represents relative degrees of freedom
(DoFs) between the bodies. The Joint Actuator block actuates a Joint
block connected between two Bodies with one of these signals:

• A generalized force:

- Force for translational motion along a prismatic joint primitive

- Torque for rotational motion about a revolute joint primitive

• A motion:

- Translational motion for a prismatic joint primitive, in terms of
linear position, velocity, and acceleration. The velocity signal must
be the derivative of the position signal, and the acceleration the
derivative of the velocity.

- Rotational motion for a revolute joint primitive, in terms of
angular position, velocity, and acceleration. The angular velocity
signal must be the derivative of the angle signal, and the angular
acceleration the derivative of the angular velocity.

The generalized force or the motion is a function of time specified
by a Simulink input signal. This signal can be any Simulink signal,
including a signal feedback from a Sensor block.

The Joint Actuator applies the actuation signal along/about the joint
axis in the reference coordinate system (CS) specified for that joint
primitive in the Joint’s dialog. The Joint connects a base and a follower
Body. The base-follower sequence determines the sense of the actuation
signal.

The inport is the Simulink input signal. The output is the connector
port you connect to the Joint block you want to actuate. A Joint Actuator
block actuates one joint primitive at a time:

11-106

Joint Actuator

• A primitive Joint (Prismatic or Revolute) has only one primitive
within the Joint to actuate.

• A composite Joint has multiple joint primitives within, and you must
choose which of those primitives to actuate with the Joint Actuator.

You cannot connect a Joint Actuator to a Spherical or spherical
primitive.

Caution You cannot simultaneously actuate a joint primitive with Joint
Actuator motion actuation and with a Joint Initial Condition Actuator.

Dialog
Box and
Parameters

The dialog has one active area, Actuation. The full block parameters
are not displayed unless you connect it to a specific Joint block.

Actuation Connected to primitive
In the pull-down menu, choose the joint primitive within the Joint
that you want to actuate with the Joint Actuator. A primitive
Joint block has only one joint primitive.

You cannot connect a Joint Actuator to a spherical primitive.

11-107

Joint Actuator

If the Joint Actuator is not connected to a Joint block, this menu
is blank.

Actuate with
In the pull-down menu, choose one of two types of actuation,
Generalized Forces or Motion.

Generalized Forces

This option interprets the actuation signal as a force or a torque
between the Bodies connected by the Joint block you are actuating.
Choose units depending on whether you are actuating a prismatic or
revolute primitive.

Applied force units
In the pull-down menu, choose units for the actuation force. The
default is N (newtons).

The Simulink input is a 1-component signal.

Applied torque units
In the pull-down menu, choose units for the actuation torque. The
default is N*m (newton-meters).

11-108

Joint Actuator

The Simulink input is a 1-component signal.

Motion

This option interprets the actuation signal as a motion of the joint
primitive to which you connect the Joint Actuator. Choose units
depending on whether you are actuating a prismatic or revolute
primitive. The Simulink input is a bundled 3-component signal with
components in the order shown in the dialog.

Position units
In the pull-down menu, choose units for the linear position motion
actuation. The default is m (meters).

Velocity units
In the pull-down menu, choose units for the linear velocity motion
actuation. The default is m/s (meters/second).

Acceleration units
In the pull-down menu, choose units for the linear acceleration
motion actuation. The default is m/s2 (meters/second2).

11-109

Joint Actuator

Angular units
In the pull-down menu, choose units for the angular motion
actuation. The default is deg (degrees).

Angular velocity units
In the pull-down menu, choose units for the angular velocity
motion actuation . The default is deg/s (degrees/second).

Angular acceleration units
In the pull-down menu, choose units for the angular acceleration
motion actuation. The default is deg/s2 (degrees/second2).

Example Here is a Joint Actuator connected to a Prismatic that connects two
Bodies:

11-110

Joint Actuator

You must add an Actuator port (connector port) to the Joint block
to connect the Joint Actuator to it. The base (B)-follower (F) Body
sequence on the two sides of the Joint determines the sense of the Joint
Actuator data.

See Also Joint Initial Condition Actuator, Joint Sensor, Joint Stiction Actuator,
Mechanical Branching Bar, Prismatic, Revolute

See “Joints” on page 10-2.

In Simulink, see the Signal Routing Library and the Sources Library.

11-111

Joint Initial Condition Actuator

Purpose Apply initial positions and velocities to primitives of Joint before
starting simulation

Library Sensors & Actuators

Description The Joint Initial Condition Actuator block supplies the prismatic and
revolute joint primitives of a Joint block with initial value data. The
initial values are the positions and velocities of the joint primitives
and fully specify the initial state of motion (initial kinematic state)
of those primitives.

You can set initial positions and velocities for two primitive types:

• Translational initial conditions for a prismatic primitive, in terms of
linear position and velocity

• Rotational initial conditions for a revolute primitive, in terms of
angular position and velocity

This block can actuate one, some, or all of the prismatic and revolute
primitives of a Joint.

The Joint Initial Condition Actuator applies the initial state along/about
the joint axis in the reference coordinate system (CS) specified for that
joint primitive in the Joint’s dialog. The Joint connects a base and a
follower Body. The base-follower sequence determines the sense of the
actuation signal.

The output is the connector port you connect to the Joint block whose
initial conditions you want to set. You set the initial linear and/or
angular positions and velocities in the block’s dialog, so there is no
input signal.

You cannot actuate a Spherical or spherical primitive with a Joint
Initial Condition Actuator.

11-112

Joint Initial Condition Actuator

Caution You cannot simultaneously actuate a joint primitive with
a Joint Initial Condition Actuator and with Joint Actuator motion
actuation.

Initial Geometric Versus Kinematic Configuration

When you build your machine, the geometric configuration of the bodies
(the home configuration) implicitly specifies the initial positions/angles
of bodies relative to one another and to World. The Ground, Body,
and Joint layout specifies only initial coordinates (degrees of freedom
or DoFs), not their corresponding velocities. Starting a simulation in
this state sets all initial velocities to zero. You can set the full initial
kinematic state (the initial configuration), both positions and velocities,
of joint primitives by using Joint Initial Condition Actuator blocks.

Initial Condition Actuation in Open and Closed Topologies

In a SimMechanics model, the DoFs represented by Joints are relative.
Suppose you actuate a Joint with initial conditions, and that Joint
has other Joints in a sequence connected to it through intermediate
Bodies. Then the initial conditions applied to the first Joint change
the absolute positions and velocities of the other Joints (as measured
in World) because the initial conditions of the other Joints are defined
relative to the first.

The one exception to this rule occurs if the actuated Joint is part of a
closed loop. SimMechanics cuts one Joint in each closed loop. The initial
conditions applied to a Joint indirectly affect the initial conditions of the
other connected Joints only up to (but not including) the cut Joint.

11-113

Joint Initial Condition Actuator

Dialog
Box and
Parameters

The dialog has one active area, Actuation.

Actuation The menu choices are available for every primitive in the Joint to
which the Joint Initial Condition Actuator is connected. If you connect
the Actuator with its dialog open, the primitive list is automatically
updated to reflect the connected Joint’s primitives. If the Actuator is
unconnected, all primitive types are shown, including two that cannot
be actuated, spherical (S) and weld (W).

Enable
Select this check box if you want to actuate the primitive with
initial conditions. The default is not selected.

Primitive
Displays the name of the primitive within the Joint. Not an active
field.

Position
Enter a value for the initial position of the primitive, either
prismatic or revolute. The default is 0.

11-114

Joint Initial Condition Actuator

Units
In the pull-down menu, select units for the initial position. The
defaults are m (meters) for prismatic primitives and deg (degrees)
for revolute primitives.

Velocity
Enter a value for the initial velocity of the primitive, either
prismatic or revolute. The default is 0.

Units
In the pull-down menu, select units for the initial velocity. The
defaults are m/s (meters/second) for prismatic primitives and
deg/s (degrees/second) for revolute primitives.

Example Here is a Joint Initial Condition Actuator connected to a Custom Joint,
which connects two Bodies:

You must add an Actuator port (connector port) to the Joint block to
connect the Joint Initial Condition Actuator to it. The base (B)-follower
(F) Body sequence on the two sides of the Joint determines the sense of
the Joint Initial Condition Actuator data.

See Also Joint Actuator, Joint Sensor, Joint Stiction Actuator, Mechanical
Branching Bar, Prismatic, Revolute

See Chapter 3, “Representing Motion” for more details about a
machine’s state of motion. “How SimMechanics Works” on page 5-15
explains how SimMechanics initializes a machine.

11-115

Joint Initial Condition Actuator

See “Using JICA Blocks” on page 4-58 for setting general initial
conditions (positions and velocities) of DoFs in a machine. “Cutting
Closed Loops” on page 4-36 and “Verifying Machine Topology” on page
4-74 discuss how SimMechanics cuts Joints in closed loops.

See “Joints” on page 10-2.

In Simulink, see the Signal Routing Library and the Sources Library.

11-116

Joint Sensor

Purpose Measure motion of and force or torque on joint primitive

Library Sensors & Actuators

Description The Joint Sensor block measures the position, velocity, and/or
acceleration of a joint primitive in a Joint block.

The Joint Sensor measures the motion along/about the joint axis
(or about the pivot point for a spherical primitive) in the reference
coordinate system (CS) specified for that joint primitive in the Joint’s
dialog. The Joint connects a base and a follower Body. The base-follower
sequence determines the sense of the motion.

Depending on the joint primitive being sensed, you measure one of
these motion types:

• Translational motion for a prismatic joint primitive, in terms of
linear position, velocity, and/or acceleration

• Rotational motion for a revolute joint primitive, in terms of angular
position, velocity, and/or acceleration

• Spherical motion for a spherical joint primitive, in terms of a
quaternion, quaternion derivative, and/or quaternion second
derivative

The input is the connector port connected to the Joint being sensed. The
outport is a set of Simulink signals or one bundled Simulink signal of
the position, velocity, and/or acceleration of the joint primitive.

A Joint Sensor block measures one joint primitive at a time:

• A primitive Joint (Prismatic or Revolute) has only one primitive
within the Joint to sense.

• A composite Joint has multiple joint primitives within, and you must
choose which primitive to sense with the Joint Sensor.

A body’s orientation rotation matrix R relates vector components
measured in the body CS and in the inertial World CS by [R]·vb = vs.

11-117

Joint Sensor

The column vector vb lists the vector v’s three components measured in
the body CS. The column vector vs lists the vector v’s three components
measured in the World CS.

Joint Measurement and the Home Configuration

The Joint Sensor block measures the state of a degree of freedom,
translational or rotational. It measures this state relative to the home
configuration of the machine, the machine state before the application
of initial condition actuators and assembly of disassembled joints. Thus
the Joint Sensor includes the effect of the latter, which act before the
simulation starts.

Dialog
Box and
Parameters

The dialog has one active area, Measurements. The block parameters
are not displayed unless you connect it to a specific Joint block.

Measurements Connected to primitive
In the pull-down menu, choose the joint primitive within the Joint
that you want to measure with the Joint Sensor. A primitive Joint
block has only one joint primitive.

If the Joint Sensor is not connected to a Joint block, this menu
is not shown.

11-118

Joint Sensor

Output selected parameters as one signal

Select this check box to convert all the output signals into a single
bundled signal. The default is selected. If you clear it, the Joint
Sensor block will grow as many Simulink outports as there are
active signals selected, in the same order top to bottom, in the
dialog.

If the check box is selected, the Simulink signal out has all the
active signals ordered into a single row vector. The order and type
of the signal components depend on the joint primitive, as listed
in the Simulink signal tables following.

The Measurements pane you see in the Joint Sensor dialog depends
on the type of joint primitive to which you connect the Joint Sensor.

Measuring Prismatic Motion

In the Primitive Outputs area, select the check box(es) for each of
the possible measurements you want to make: Position, Velocity,
Acceleration, and Computed force.

The computed force is that force along the prismatic axis which
reproduces the follower motion with respect to base.

11-119

Joint Sensor

In the Units pull-down menus, choose the units for each of
the measurements you want. The defaults are m (meters), m/s
(meters/second), m/s2 (meters/second2), N (newtons), respectively, for
Position, Velocity, Acceleration, and Computed force.

The bundled Simulink output signal for a prismatic primitive has these
measurements ordered in a row vector. Nonselected components are
removed from the vector signal:

Position Velocity Acceleration Computed
Force

Reaction
Torque
(3-vector)

Reaction
Force
(3-vector)

Measuring Revolute Motion

In the Primitive Outputs area, select the check box(es) for each of the
possible measurements you want to make: Angle, Angular velocity,
Angular acceleration, and Computed torque.

The computed torque is that torque about the revolute axis which
reproduces the follower motion with respect to base.

In the Units pull-down menus, choose the units for each of the
measurements you want. The defaults are deg (degrees), deg/s
(degrees/second), deg/s2 (degrees/second2), N*m (newton-meters), and
N (newtons), respectively, for Angle, Angular Velocity, Angular
Acceleration, and Computed torque.

11-120

Joint Sensor

The bundled Simulink output signal for a revolute primitive has these
measurements ordered in a row vector. Nonselected components are
removed from the vector signal:

Angle Angular
Velocity

Angular
Acceleration

Computed
Torque

Reaction
Torque
(3-vector)

Reaction
Force
(3-vector)

Note The absolute angle of revolute motion is mapped on to the interval
(-180o, +180o] degrees or (-π,+π] radians.

Measuring Spherical Motion

In the Primitive Outputs area, select the check box(es) for each of the
possible measurements you want to make: Quaternion, Quaternion,
derivative, and Quaternion, second derivative.

Quaternions are dimensionless, 4-component row vectors. The time
unit for the derivatives is seconds.

The bundled Simulink output signal for a spherical primitive has these
quaternion measurements ordered into a larger row vector. Nonselected
components are removed from the vector signal:

Quaternion
(4-vector)

Quaternion,
derivative
(4-vector)

Quaternion,
second
derivative
(4-vector)

Reaction Torque
(3-vector)

Reaction Force
(3-vector)

11-121

Joint Sensor

Reaction Force and Torque

In the Joint Reactions area, select the check box(es) for each of the
possible measurements you want to make. The reaction force and torque
are 3-component vectors of the force and torque that the joint primitive
transfers to the base or follower Body.

Reaction torque
Select the check box to output the reaction torque.

Reaction force
Select the check box to output the reaction force.

Reaction measured on
Choose the Body on which the reaction force and torque vectors
are measured, Base or Follower. The default is Base.

With respect to CS
In the pull-down menu, choose the coordinate system in which
the reaction torque and force vectors are measured: either the
Local (Body CS) to which the Sensor is connected or the default
Absolute (World).

In the Absolute case, the force and torque vectors have
components measured relative to the inertial World CS axes.
In the Local case, the same force and torque signals are
premultiplied by the inverse orientation rotation matrix R-1 = RT

for the Body selected in Reactions measured on.

11-122

Joint Sensor

Example Here is a Joint Sensor connected to a Prismatic that connects two
Bodies:

You must add an Sensor port (connector port) to the Joint block to
connect the Joint Sensor to it. The base (B)-follower (F) Body sequence
on the two sides of the Joint determines the sense of the Joint Sensor
data.

See Also Body Sensor, Constraint & Driver Sensor, Joint Actuator, Joint Initial
Condition Actuator, Joint Stiction Actuator, Mechanical Branching
Bar, Prismatic, Revolute, Spherical

See “Kinematics and the Machine’s State of Motion” on page 3-2, “Body
Motion in SimMechanics” on page 3-4, and “Modeling Sensors” on page
4-63.

In Simulink, see the Signal Routing Library and the Sinks Library.

11-123

Joint Spring & Damper

Purpose Model damped linear oscillator force or torque on prismatic or revolute
joint between two bodies

Library Force Elements

Description The Joint Spring & Damper block models a damped linear oscillator
force acting along a prismatic primitive or a damped linear oscillator
torque acting about a revolute primitive. The joint primitives are
connected between two bodies, and the force or torque acts between
these bodies. The sign of the force or torque is set by the base
(B)-to-follower (F) sequence of the bodies. These models represent
damped linear translational and torsional springs in the prismatic and
revolute cases, respectively.

You connect this block to a Joint at one of the Joint’s sensor/actuator
ports. (If the Joint lacks a sensor/actuator port, open its dialog and
create one.) The Joint represents any mixture of translational and
rotational degrees of freedom (DoFs). With the Joint Spring & Damper
block, you can then apply any combination of damped linear oscillator
forces on any prismatics and damped linear torsion torques on any
revolutes.

Note Each Joint Spring & Damper block connected to a revolute
primitive adds a Simulink state to your model. These states are in
addition to other normal Simulink states, such as those associated with
Integrator and Transfer Fcn blocks. See the Simulink documentation
for more about Simulink model states.

This feature does not change the mechanical states of your model,
those states associated with SimMechanics joint blocks. See the
mech_stateVectorMgr command reference for more about mechanical
states.

11-124

Joint Spring & Damper

Joint Spring and Damper Theory

Connect two Bodies with a Joint having some combination of prismatic
and revolute primitives.

Caution The Joint Spring & Damper uses a Joint Sensor to measure
the degree of freedom in the Joint. These values are measured relative
to the home configuration of the DoF, its state before the application of
initial condition actuators and assembly of disassembled joints.

Translational Case
If x represents the displacement along a prismatic axis, and v = dx/dt is
the prismatic DoF’s linear speed, then the damped spring force acting
along this prismatic and between the Bodies connected by this Joint is

F = -k(x - x0) - bv

The model parameters are the spring constant k, the natural spring
length (offset) x0, and the damping constant b. The natural length is the
spring’s length with no forces acting on it and should be nonnegative:
x0 ≥ 0. A stable spring requires k > 0. A damping representing
dissipation and respecting the second law of thermodynamics requires
b ≥ 0. You can use a negative b to represent energy pumping.

Rotational Case
If θ represents the displacement about a revolute axis, and ω = dθ/dt is
the revolute DoF’s angular speed, then the damped torsion torque acting
about this revolute and between the Bodies connected by this Joint is

τ = -k(θ - θ0) - bω

The model parameters are the torsion constant k, the natural torsion
angle (offset) θ0, and the damping constant b. The natural angle is the
torsion balance’s direction with no torques acting on it and can have
any sign. A stable torsion requires k > 0. A damping representing

11-125

Joint Spring & Damper

dissipation and respecting the second law of thermodynamics requires
b ≥ 0. You can use a negative b to represent energy pumping.

Dialog
Box and
Parameters

Actuation The menu lists all the active primitives in the Joint to which the Joint
Spring & Damper block is connected. If you connect the Joint Spring &
Damper with its dialog open, the primitive list is automatically updated
to reflect the connected Joint’s primitives.

Primitive
Lists the active primitives in the Joint to which the block is
connected. P represents a prismatic primitive, R a revolute
primitive, S a spherical primitive, and W a weld primitive.

Enable
To enable force or torque actuation on any particular primitive in
the Joint, select the Enable check box next to that primitive’s
name in the Primitive column. You cannot actuate spherical or
weld primitives.

11-126

Joint Spring & Damper

Spring Constant k
Enter the spring or torsion constant k, for a prismatic or revolute
primitive, respectively. The default is 0.

The units for k are derived implicitly from your choice of position
and force/torque units.

Damper Constant b
Enter the spring or torsion damping constant b, for a prismatic or
revolute primitive, respectively. The default is 0.

The units for b are derived implicitly from your choice of velocity
and force/torque units.

Spring Offset x0
Enter the natural spring length x0 or the natural torsion angle θ0,
for a prismatic or revolute primitive, respectively. The default is 0.

Position Units
In the pull-down menu, select linear or angular units for prismatic
or revolute primitives, respectively. The default is m (meters) or
deg (degrees).

Velocity Units
In the pull-down menu, select linear or angular velocity units for
prismatic or revolute primitives, respectively. The default is m/s
(meters/second) or deg/s (degrees/second).

Force/Torque Units
In the pull-down menu, select force or torque units for prismatic
or revolute primitives, respectively. The default is N (newtons)
or N*m (newton-meters).

See Also Body, Body Spring & Damper, Custom Joint, Joint Actuator, Joint
Sensor, Prismatic, Revolute

See “Modeling Force Elements” on page 4-69.

11-127

Joint Stiction Actuator

Purpose Apply classical friction to joint primitive

Library Sensors & Actuators

Description The Joint Stiction Actuator block applies stiction (classical friction) to
a prismatic or revolute joint primitive. The stiction is regulated by a
friction model whose parameters you specify. (See “Stiction Theory”
on page 11-132.) The Joint Stiction Actuator applies stiction to the
joint primitive as a relative force/torque between the joint’s connected
Bodies. The bodies can experience additional forces independent of
the applied stiction.

The inports are Simulink signals. The output is a connector port. You
cannot connect a Joint Stiction Actuator to a Spherical block or spherical
primitive. Restrictions on simultaneous actuators and sensors include:

• You cannot actuate a joint primitive simultaneously with a Joint
Stiction Actuator and a Joint Actuator. But with the Joint Stiction
Actuator inport External Actuation, you can apply to the joint
primitive an external (nonfrictional) force/torque actuation signal
equivalent to applying a Joint Actuator.

• You can simultaneously actuate a joint primitive with a Joint Stiction
Actuator and a Joint Initial Condition Actuator.

• You can also simultaneously actuate a joint primitive with a Joint
Stiction Actuator and measure the force/torque along/around the
joint primitive with a Joint Sensor.

Caution You cannot trim or linearize a SimMechanics model that
contains a Joint Stiction Actuator block.

11-128

Joint Stiction Actuator

Dialog
Box and
Parameters

The dialog has one active area, Actuation. The block parameters are
not displayed unless you connect it to a specific Joint block.

Connected to primitive
In the pull-down menu, choose the joint primitive within the
Joint that you want to actuate with the Joint Stiction Actuator. A
primitive Joint block has only one joint primitive.

You cannot connect a Joint Stiction Actuator to a spherical
primitive.

If the Joint Stiction Actuator is not connected to a Joint block, this
menu displays Unknown.

External force units
In the pull-down menu, choose units for the external nonfrictional
force/torque Fext. The default is N (newtons) if connected to a
prismatic primitive and N*m (newton-meters) if connected to a
revolute primitive.

11-129

Joint Stiction Actuator

Kinetic friction units
In the pull-down menu, choose units for the kinetic friction
force/torque FK. The default is N (newtons) if connected to a
prismatic primitive and N*m (newton-meters) if connected to a
revolute primitive.

Velocity threshold (MKS-SI units)
Enter the positive relative speed of the joint primitive below
which the joint locks by static friction. Above that speed, the
joint is unlocked.

The units must be MKS or SI: for a prismatic primitive,
meters/second; for a revolute primitive, radians/second.

Summary of Joint Stiction Actuator Inport Signals

All the Simulink inports are one-component signals. Here is an example
of a prismatic joint connected between two bodies and actuated with
stiction:

11-130

Joint Stiction Actuator

Joint Stiction Actuator Simulink Inport Signals

Simulink Inport
Friction
Model Description

External Actuation Fext External nonfrictional
force/torque

Kinetic Friction FK Kinetic friction

Forward Stiction
Limit

FS
f < 0 Static friction lower limit

Static Test
Friction

Ftest Static test friction

Reverse Stiction
Limit

FS
r > 0 Static friction upper limit

11-131

Joint Stiction Actuator

Units

You specify units in the dialog only for the external nonfrictional and
kinetic friction forces/torques, Fext and FK. These two friction signals are
used to integrate the motion of the joint and have physical significance
in the model. Thus units are necessary for Fext and FK.

The other three signals are compared only to one another in the locking
condition FS

f < Ftest < FS
r. These friction signals are not used to integrate

motion and thus do not have units set in the dialog. But they must have
the same implicit units for a valid comparison.

Caution The threshold velocity vth must be set greater than the
Absolute tolerance in the Solver node of your model’s Configuration
Parameters dialog to avoid a meaningless threshold value.

Never set Absolute tolerance to auto if stiction actuators are present
in a model. A recommended setting is to make vth at least 10 times
the Absolute tolerance value.

See “Controlling the Simulation” on page 5-11 for a discussion of setting
simulation parameters.

Example The mech_dpen_sticky model in the Demos library has two revolute
joints actuated with stiction. See “Joint Stiction Actuator Example:
Mixed Static and Kinetic Friction” on page 4-56.

Stiction
Theory

Kinematics

v and a are the velocity and acceleration along or around a joint
primitive axis. These quantities are relative between the two bodies at
the joint ends and signed ± to indicate forward or reverse. The joint
directionality is set by the base (B)-to-follower (F) Body sequence of
Bodies attached to the joint primitive being actuated.

11-132

Joint Stiction Actuator

Continuous Motion

A joint subject to stiction, if unlocked, moves in continuous motion.
During this motion, you can apply two forces/torques at the joint
primitive:

• A kinetic friction force/torque FK:

- FK < 0 retards forward motion

- FK > 0 retards reverse motion

• An external, nonfrictional force/torque Fext

Discrete Modes: Locked, Wait, Unlocked

Besides its continuous motion mode, a joint actuated by stiction has
two other discrete modes. The Joint Stiction Actuator switches a joint
primitive between locked and unlocked modes. In one mode, the joint
locks rigidly; in the other, it moves with the kinetic friction and external
nonfrictional forces/torques applied. The joint can also be in a wait
mode, between locked and unlocked.

11-133

Joint Stiction Actuator

Joint Stiction Modes and Transition Conditions

Unlocking
You specify the unlocking criteria by a two-condition threshold,
constructed from four user-specified inputs.

• Joint unlocking threshold velocity vth > 0 via the block dialog.

• Static friction limits FS
f< 0 and FS

r > 0 for forward and reverse
motion, and a static test friction Ftest, all three specified via Simulink
signals. The static test friction Ftest and forward/reverse limits FS

f

and FS
r can be functions of the machine state and/or time.

The static test and kinetic frictions Ftest and FK can be discontinuous,
but should be physically sensible.

11-134

Joint Stiction Actuator

Locking
You specify the locking criterion with the velocity threshold alone.

• Joint locking threshold velocity vth > 0 via the block dialog.

Locked Mode

In this mode, v and a of the joint are zero. The static computed
force/torque FS at the joint is internally computed to maintain this
mode: Fext + FS + FF - FB = 0. The forces/torques FB, FF are the
forces/torques on the base and follower Bodies apart from those
forces/torques acting at the joint.

The joint remains locked as long as FS
f < Ftest < FS

r.

In most realistic friction models, you would set Ftest equal to the
computed FS.

Wait Mode

If the static test friction Ftest leaves the static friction range [FS
f, FS

r],
the joint has passed the first condition for unlocking, and the simulation
enters wait mode, suspending the mechanical motion.

A search begins for a consistent state of all stiction-actuated joints in
your model.

• The potential direction of motion after unlocking is determined by all
the nonfrictional forces on the bodies.

• During the search, the net force/torque F = Fext + FK at the joint
primitive is computed, where FK is the kinetic friction, and a is
determined.

• For potential motion in the forward (reverse) direction, if a < 0 (a >
0), the search returns to the locked mode.

Once a consistent state for all stiction-actuated joints are found,
mechanical motion restarts. The simulation integrates a to obtain v.
When |v| exceeds vth, the second condition, the joint unlocks.

11-135

Joint Stiction Actuator

The wait mode prevents infinite cycling between locked and unlocked
modes, although it can noticeably slow down the simulation. The mode
search uses a nonphysical algebraic loop, which displays warnings at
the MATLAB command line.

Unlocked Mode

In the unlocked mode, the joint primitive moves, actuated by the sum of
the external, nonfrictional force/torque Fext and the kinetic friction FK.

The joint returns to the locked mode if v falls into the range -vth < v <
+vth. If the simulation steps in time over this velocity range, it instead
catches the zero of velocity with Simulink zero-crossing detection.

Static and Kinetic Friction and Relative Velocity

See Also Joint Actuator, Joint Initial Condition Actuator, Joint Sensor,
Mechanical Branching Bar, Prismatic, Revolute

11-136

Joint Stiction Actuator

See “Actuating a Joint” on page 4-52. For trimming and linearization,
see Chapter 8, “Analyzing Motion”.

In Simulink, see the Signal Routing Library and the Sources Library,
and “Zero-Crossing Detection”.

11-137

Linear Driver

Purpose Specify component of vector difference of two Body CS origins as
function of time

Library Constraints & Drivers

Description The Linear Driver block specifies a component of the vector difference of
Body coordinate system (CS) origins as a function of time.

Let r1, r2 be the vector positions of the origins of CS1 on one Body, CS2
on the other Body, and R = r1 -r2. The Linear Driver block specifies one
of the vector components of R = (X,Y,Z), projected on to the World CS
axes, as a function of time:

X, Y, or Z = X(t=0), Y(t=0), or Z(t=0) + f(t)

You connect a Driver Actuator block to the Linear Driver.

The Simulink input signal into the Driver Actuator specifies the
time-dependent driving function f(t) and its first two derivatives, as
well as their units. If you do not actuate Linear Driver, this block acts
as a time-independent constraint that freezes the vector component
between the two Body CS origins at its initial value X(t=0), Y(t=0), or
Z(t=0) during the simulation.

Drivers restrict relative degrees of freedom (DoFs) between a pair of
bodies as specified functions of time. Locally in a machine, they replace
a Joint as the expression of the DoFs. Globally, Driver blocks must occur
topologically in closed loops. Like Bodies connected to a Joint, the two
Bodies connected to a Drivers are ordered as base and follower, fixing
the direction of relative motion.

You can also connect a Constraint & Driver Sensor to any Driver and
measure the reaction forces/torques between the driven bodies.

11-138

Linear Driver

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis.

Current base
When you connect the base (B) connector port on the Linear Driver
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure, Linear
Driver Base and Follower Body Connector Ports on page 11-140.

Current follower
When you connect the follower (F) connector port on the Linear
Driver block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Linear Driver Base and Follower Body Connector Ports
on page 11-140.

11-139

Linear Driver

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Driver Actuator and
Constraint & Driver Sensor blocks to this Driver. The default is 0.

To activate the Driver, connect a Driver Actuator.

Linear Driver Base and Follower Body Connector Ports

Parameters World Axis
In the pull-down menu, choose the component of the vector
difference R between the Body CS origins that you want to drive
as a function of time. The components are measured with respect
to the World CS axes. The choices are X, Y, or Z. The default is X.

See Also Constraint & Driver Sensor, Distance Driver, Driver Actuator

See “Modeling Constraints and Drivers” on page 4-38 for more on
restricting DoFs with Drivers.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15.

11-140

Machine Environment

Purpose Set up mechanical environment for machine

Library Bodies

Description The Machine Environment block allows you to view and change the
mechanical environment settings for one machine in your model.

Note A SimMechanics model consists of one or more machines. A
machine is a complete, connected diagram of SimMechanics blocks
topologically distinct from other complete SimMechanics block
diagrams. Each machine must have one or more Ground blocks.

A machine can be a composite of submachines connected by Shared
Environment blocks. Each submachine must have one or more Ground
blocks.

Exactly one Ground per machine, simple or composite, must be
connected to a Machine Environment block for your SimMechanics
model to be valid.

This block determines the following settings for the machine to which
it is connected:

• Parameters that control how the machine is simulated

• Settings to control how constraints are interpreted

• Settings to control how linearization is implemented

• Whether the machine is displayed in SimMechanics visualization

The Machine Environment Port and Connecting the Block

You connect this block to a Ground by enabling that Ground’s Machine
Environment port from the Ground dialog.

11-141

Machine Environment

Gravity as a Simulink Signal

This block also allows you to input gravity as a variable Simulink
signal. If you choose to do this, a Simulink inport > also appears on the
block for connection to a three-component Simulink signal line.

Opening the Simulink Configuration Parameters Dialog

You can open the Simulink Configuration Parameters dialog for
viewing and editing by clicking the Open Configuration Parameters
button on the lower left of the dialog.

Dialog
Box and
Parameters

In the lower half of its dialog, the Machine Environment block has
four active panes that you can view and modify by selecting the
corresponding tabs. You can apply your settings at any time by clicking
Apply or OK.

• Parameters

• Constraints

• Linearization

• Visualization

11-142

Machine Environment

Configuring the Dynamics

In this pane, you configure settings that control the mechanical
dynamics.

Gravity vector
The value of this parameter is a MATLAB vector that specifies
the magnitude and direction of gravitational acceleration in the
model’s world coordinate system. It must be a three-component

11-143

Machine Environment

vector. The default vector is [0 -9.81 0]. This field is disabled
if you choose to input gravity as a signal.

The default units are m/s2 (meters per square second). Use the
pull-down menu to the right if you want to reset the units.

Input gravity as signal
Select this check box if you want to disable the Gravity vector
field and instead input gravity as a variable Simulink signal. The
default is not selected.

If you select this check box, a Simulink inport appears on the
block in addition to the existing Machine Environment port. You
input the gravity vector as a three-component Simulink signal to
this port. The components are, respectively, x, y, and z.

Machine dimensionality
In the pull-down menu, select in how many dimensions you want
SimMechanics to simulate your machine: in 3D Only or 2D Only,
or let SimMechanics choose for you with Auto. The default is 3D
Only.

You must take care, if you choose 2D Only, that the machine
actually moves in only two dimensions. If it does not, the
simulation stops with an error.

Analysis mode
Specifies the type of analysis to be performed during the
simulation. Choose one from the pull-down menu.

11-144

Machine Environment

Analysis
Mode Description

Forward
dynamics

Computes the positions and velocities of the
system’s bodies, given forces, torques, and initial
conditions. This is the default mode.

Inverse
dynamics

Computes the forces and torques required to
produce the specified motions of an open system.

Kinematics Computes the forces and torques required to
produce the specified motions of a closed-loop
system.

Trimming Variant of Forward Dynamics mode to be used
with the Simulink trim command. Determines
steady-state or other points in system state
space.

Linear assembly tolerance
Maximum position error allowed between bodies connected by
prismatic joints. The default is 1e-3 m. Use the menu on the
right to set the units.

Angular assembly tolerance
Maximum angular error allowed between bodies connected by
revolute joints. Default is 1e-3 rad. Use the menu on the right to
set the units.

Implementing Constraints

11-145

Machine Environment

In this pane, you tell SimMechanics how to interpret constraints in
machines that contain blocks from the Constraints & Drivers library,
cut Joint, Constraint, and Driver blocks in closed loops, or both.

Constraint solver type
Type of solver used to solve constraints on the mechanical
system’s states specified by the machine’s constraint and driver
blocks. Choose one from the pull-down menu.

Solver Type Description

Stabilizing Adds a self-correcting term to the state
equations to be solved that stabilizes the
numerical solution, i.e., causes it to evolve
toward, rather than drift away from, the
actual solution. This is the default.

Tolerancing Solves the constraints on the system’s states
to a specified degree of accuracy.

Machine
precision

Solves the constraints to the numerical
precision of the computer on which the
simulation is running.

Relative tolerance
The relative tolerance used by the tolerancing constraint solver to
determine when to stop refining a solution. Default is 1e-4.

Enabled only if Constraint solver type is set to Tolerancing.

Absolute tolerance
The absolute tolerance used by the tolerancing constraint solver
to determine when to stop refining the solution of a machine
state. Default is 1e-4.

Enabled only if Constraint solver type is set to Tolerancing.

11-146

Machine Environment

Use robust singularity handling
Select this check box if you want Simulink to take extra steps
to handle singularities in a system’s equations of motion. The
default is not selected.

This option increases the length of time required to solve a
system’s equations of motion regardless of whether they have
singularities. Hence, you should select this option only as a last
resort, i.e., only if the Simulink solvers cannot otherwise solve
the system’s equations of motion or require an excessively long
time to do so.

Configuring Linearization

In this pane, you tell SimMechanics how to linearize your machine.

State perturbation type
Specifies the type of state perturbation used by linmod to linearize
a machine. The default is Fixed.

• Adaptive recomputes the size of the perturbation used at each
step in the linearization process to ensure accurate computation
of the linearization coefficients. It starts with the entry in the
Perturbation size field as an initial guess.

• Fixed uses the perturbation size specified in the Perturbation
size field for every step.

Perturbation size
Specifies the relative size of the perturbation used by the Fixed
perturbation option. Specifies the relative size of the initial

11-147

Machine Environment

guess perturbation used by the Adaptive perturbation type.
The perturbation size is relative to the size of the state being
perturbed. The default is 1e-5.

Turning Machine Visualization On or Off

In this pane, you determine whether SimMechanics visualization
displays this machine.

Visualize machine
Select this check box if you want the machine to which this block
is connected to appear in the SimMechanics visualization window.
The default is selected.

See Also Ground, Shared Environment

For more about SimMechanics models and machines, see “Modeling
Machines” on page 4-3. For more about using Grounds and creating
valid SimMechanics models, see “Modeling Bodies and Grounds”
on page 4-10. For more about modeling constraints, see “Modeling
Constraints and Drivers” on page 4-38.

For more about running SimMechanics with Simulink, see “Running
SimMechanics Models in Simulink” on page 5-2, “Configuring a
Machine’s Mechanical Environment” on page 5-3, and “Controlling the
Simulation” on page 5-11.

Chapter 6, “Visualizing and Animating Machines” discusses starting,
configuring, and using SimMechanics visualization. See “Starting
SimMechanics Visualization” on page 6-2.

Chapter 8, “Analyzing Motion” presents an in-depth look at the various
motion analysis modes available in SimMechanics, starting with

11-148

Machine Environment

“Analyzing Motion”. For the Inverse Dynamics and Kinematics modes,
see “Finding Forces from Motions” on page 8-7. For the Trimming
mode, see “Trimming Mechanical Models” on page 8-18. To learn how
to linearize mechanical models, see “Linearizing Mechanical Models”
on page 8-32.

See the relevant entries in the Glossary: dynamics, ground,
kinematics, machine, machine precision constraint, stabilizing
constraint, and tolerancing constraint.

For more about configuring simulations in Simulink, consult the section
on the Configuration Parameters dialog in the Simulink documentation.

11-149

Mechanical Branching Bar

Purpose Map multiple sensor or actuator lines to one sensor or actuator port
on Joint, Constraint, or Driver, or to one Body coordinate system port
on Body

Library Utilities

Description The Mechanical Branching Bar bundles multiple actuator and sensor
connection lines into one line, allowing you to connect multiple actuators
and/or sensors to a single connector port on a Joint, Constraint, or
Driver, or to a single Body coordinate system (CS) port on a Body. You
can choose any number of sensor/actuator ports on the Mechanical
Branching Bar.

• In the case of a Body, a single Body CS port represents a single Body
CS. If the needed Body CS port does not exist, open the Body dialog
and create one. You can connect the selected Body CS to multiple
Body Actuators and Sensors through the Mechanical Branching Bar.

• In the case of a Joint, you need a single sensor/actuator port on the
Joint. If the needed port does not exist, open the Joint’s dialog and
create one. You can connect this sensor/actuator port to multiple
Actuators and Sensors through the Mechanical Branching Bar.

Using the Mechanical Branching Bar, you can connect a Joint block
to any combination of Joint Sensors, Joint Actuators, Joint Initial
Condition Actuators, and Joint Stiction Actuators. The Actuator and
Sensor dialogs display the Joint’s primitives as if they were directly
connected to the Joint.

• The procedure for Constraints and Drivers is the same as it is
for Joints, except that you need to choose to measure reaction
forces/torques or to actuate motions.

Cascading Mechanical Branching Bars and Avoiding Closed
Loops

You can connect multiple Mechanical Branching Bar blocks in
series, creating a cascade. Connect the mechanical side of the first
Branching Bar to a Joint, Constraint, Driver, or Body. Then connect its

11-150

Mechanical Branching Bar

sensor/actuator side to the mechanical side of the second Branching
Bar, and so on.

The only restriction on cascading Mechanical Branching Bars is that
you must avoid connecting them into closed loops.

The following diagram shows a cascade, starting at a Body.

Caution To avoid simulation errors, you should not create a cascade of
Mechanical Branching Bars that closes on itself in a loop.

You should not connect the mechanical side of one Mechanical
Branching Bar to the mechanical side of another Mechanical Branching
Bar. You should also not connect the sensor/actuator side of one
Mechanical Branching Bar to the sensor/actuator side of another
Mechanical Branching Bar.

11-151

Mechanical Branching Bar

Dialog
Box and
Parameters

The dialog has one active area, Connection parameters.

Connection
Parameters

Number of branches
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Actuator and Sensor blocks
to the Mechanical Branching Bar. The default is 2.

11-152

Mechanical Branching Bar

Example Without the Mechanical Branching Bar, you must connect multiple
Sensors and Actuators to a Joint by creating a sensor/actuator port on
the Joint for each Sensor and each Actuator:

11-153

Mechanical Branching Bar

With the Mechanical Branching Bar block, you can combine all the
sensor and actuator ports for a single Joint into one sensor/actuator port:

See Also Body, Body Actuator, Body Sensor, Constraint & Driver Sensor, Driver
Actuator, Joint Actuator, Joint Initial Condition Actuator, Joint Sensor,
Joint Stiction Actuator

11-154

Parallel Constraint

Purpose Constrain body axis vectors of two bodies to be parallel

Library Constraints & Drivers

Description The two Bodies connected by a Parallel Constraint are restricted in
their relative rotational motion. The Parallel Constraint is connected
on either side to a Body CS, one on each Body. A vector aB defined in
one Body CS on the base body remains parallel to a second vector aF
defined in another Body CS on the follower body.

The Parallel Constraint block requires that:

| |/(| || |)a a a aB F B F⋅ = 1

You specify the initial direction to which both vectors must remain
parallel.

Constraints restrict relative degrees of freedom (DoFs) between a pair
of bodies. Locally in a machine, they replace a Joint as the expression of
the DoFs. Globally, Constraint blocks must occur topologically in closed
loops. Like Bodies connected to a Joint, the two Bodies connected to
a Constraint are ordered as base and follower, fixing the direction of
relative motion.

Parallel Constraint is assembled: the Body CS origin on the base body
must be initially collocated with the Body CS origin on the follower
body, to within assembly tolerance.

You can connect a Constraint & Driver Sensor to any Constraint block,
but not a Driver Actuator. The Constraint & Driver Sensor measures
the reaction forces/torques between the constrained bodies.

11-155

Parallel Constraint

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower rotating in the right-handed
sense about the rotation axis.

Current base
When you connect the base (B) connector port on the Parallel
Constraint block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Parallel Constraint Base and Follower Body Connector
Ports.

Current follower
When you connect the follower (F) connector port on the Parallel
Constraint block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Parallel Constraint Base and Follower Body Connector
Ports.

11-156

Parallel Constraint

Number of sensor ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Constraint & Driver Sensor
blocks to this Constraint. The default is 0.

Parallel Constraint Base and Follower Body Connector Ports

Parameters Parallel Constraint Axis [x y z]
Enter the axis vector defining the initial direction of the two
body axis vectors ab, af. These body axis vectors are restricted to
always remain parallel to this initial axis. The default is [1 0 0].

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the initial Parallel constraint axis is oriented with respect
to. This CS also determines the absolute meaning of reaction
forces/torques at this Constraint. The default is WORLD.

See Also Angle Driver, Constraint & Driver Sensor, Velocity Driver

See “Modeling Constraints and Drivers” on page 4-38 for more on
restricting DoFs with Constraints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on using constraints in closed loops.

See “Constraints and Drivers” on page 10-5.

11-157

Planar

Purpose Represent composite joint with two translational DoFs and one
rotational DoF, with rotational axis orthogonal to plane of translational
axes

Library Joints

Description The Planar block represents a composite joint with two translational
degrees of freedom (DoFs) as two prismatic primitives and one
rotational DoFs as one revolute primitives. The rotation axis must be
orthogonal to the plane defined by the two translation axes.

Caution A joint with two prismatic primitives becomes singular if the
two translation axes become parallel. The simulation stops with an
error in this case.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Planar block is assembled: the
origins of these Body CSs must lie along the primitive axes, and the
Body CS origins on either side of the Joint must be spatially collocated
points, to within assembly tolerances

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify reference CSs to define the
directions of the joint axes.

11-158

Planar

11-159

Planar

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis. Positive rotation is the follower moving around the
rotational axis following the right-hand rule.

Current base
When you connect the base (B) connector port on the Planar block
to a Body CS Port on a Body, this parameter is automatically reset
to the name of this Body CS. See the following figure, Planar Base
and Follower Body Connector Ports.

11-160

Planar

The base Body is automatically connected to the first joint
primitive P1 in the primitive list in Parameters.

Current follower
When you connect the follower (F) connector port on the Planar
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure, Planar
Base and Follower Body Connector Ports.

The follower Body is automatically connected to the last joint
primitive R1 in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motions of prismatic and revolute primitives are specified in
linear and angular units, respectively.

Planar Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
Planar has an entry line. These lines specify the direction of the axes of
action of the DoFs that the Planar represents.

Name - Primitive
The primitive list states the names and types of joint primitives
that make up the Planar block: prismatic primitives P1, P2 and
revolute primitives R1.

11-161

Planar

Axis of Action [x y z]
Enter here as a three-component vector the directional axes
defining the allowed motions of these primitives and their
corresponding DoFs:

• Prismatic: axis of translation

• Revolute: axis of rotation

The default vectors are shown in the dialog above. The axis is a
directed vector whose overall sign matters.

To prevent singularities and simulation errors, the two prismatic
axes cannot be parallel.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

11-162

Planar

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also In-Plane, Prismatic, Revolute

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-163

Point-Curve Constraint

Purpose Constrain motion of point on one body to be along curve on another body

Library Constraints & Drivers

Description The two Bodies connected by a Point-Curve Constraint can only move
relative to one another if a point on one body moves along a curve
on the other body. The point on one body is the origin of the Body
coordinate system (CS) to which one side of the Point-Curve Constraint
is connected. The corresponding curve starting point on the other body
is the origin of the Body CS to which the other side of the Point-Curve
Constraint is connected.

Specifying the Curve You specify the curve function on the second
body as a spline with break points and end conditions. The spline is
a piecewise cubic polynomial, with the pieces joined at user-specified
breakpoints:

(x1,y1,z1) , (x2,y2,z2) , ... , (xN,yN,zN)

and boundary conditions applied at the spline’s endpoints, (x0,y0,z0)
and (xN+1,yN+1,zN+1). The spline curve and its first two derivatives are
continuous at each breakpoint.

Constraints restrict relative degrees of freedom (DoFs) between a pair
of bodies. Locally in a machine, they replace a Joint as the expression of
the DoFs. Globally, Constraint blocks must occur topologically in closed
loops. Like Bodies connected to a Joint, the two Bodies connected to
a Constraint are ordered as base and follower, fixing the direction of
relative motion.

For the Point-Curve Constraint, the base (P) is the Body carrying
the point, and the follower (C) is the Body carrying the curve. The
Point-Curve Constraint is assembled: the Body CS origin on the base
(Point) body must be initially collocated with the Body CS origin on the
follower (Curve) body, to within assembly tolerance.

11-164

Point-Curve Constraint

You can connect a Constraint & Driver Sensor to any Constraint block,
but not a Driver Actuator. The Constraint & Driver Sensor measures
the reaction forces/torques between the constrained bodies.

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and Spline
specification. It stores the defining information of a single spline for
the constraint.

Connection
Parameters

The base (P)-follower (C) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis.

11-165

Point-Curve Constraint

Point location
When you connect the base (P) connector port on the Point-Curve
Constraint block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Point-Curve Constraint Base and Follower Body Connector
Ports.

This Body CS origin is the point of the Point-Curve Constraint.

Curve location
When you connect the follower (C) connector port on the
Point-Curve Constraint block to a Body CS Port on a Body, this
parameter is automatically reset to the name of this Body CS. See
the following figure, Point-Curve Constraint Base and Follower
Body Connector Ports.

This Body CS origin is the starting point of the curve of the
Point-Curve Constraint.

Number of sensor ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Constraint & Driver Sensor
blocks to this Constraint. The default is 0.

Point-Curve Constraint Base and Follower Body Connector Ports

Specifying
the Spline

The Point-Curve Constraint dialog gives you two ways to specify the
spline curve. The first way is entering in this dialog the coordinates
of breakpoints and endpoints on the follower and is valid for defining
curves in up to three dimensions.

11-166

Point-Curve Constraint

The second way is graphically displaying and editing the spline in
the Edit spline editor (see following), valid only for two-dimensional
curves on the follower.

Breakpoints
List here the x-components, y-components, and z-components,
respectively, of the breakpoints and endpoints that define the
spline:

X-components: enter (x0, x1, ..., xN+1) as a vector.

Y-components: enter (y0, y1, ..., yN+1) as a vector.

Z-components: enter (z0, z1, ..., zN+1) as a vector.

All three fields require nonnull entries. The number of
components in each vector should be the same. Exception and
shortcut: if all the Z components are the same, just enter one
number in the Z vector. The Breakpoints list replicates this
number to expand out a full vector.

If there are no X and/or Y components, you must still enter [0
... 0] in that/those field(s). If there are no Z components,
you must still enter at least [0] in the Z field (using the
replication/expansion shortcut).

The pull-down menu for each spatial dimension lists the history
of those previous breakpoints created by the graphical spline
editor (see following) within a single dialog session. Closing the
dialog destroys this history, and only the current breakpoint list
is retained.

Units
In the pull-down menu, choose the linear units for distances on
the constrained bodies. The default is m (meters).

11-167

Point-Curve Constraint

End conditions
In the pull-down menu, choose the type of end (boundary)
condition on the spline curve. The possible conditions are:

End
Condition Definition

Minimum
Number of
Points Notes

Natural Match each
endslope to the
slope of the
cubic that fits
the first four
points at that
end

Two points Default

Not-a-knot Only the curve
and its first
derivative are
continuous at
first and last
interior points

Four points

Periodic Match the first
and second
derivatives
of the two
endpoints

Two points
(three
recommended)

This choice
closes the
spline by
connecting
the endpoints

Allow the point to fall off the curve
If the check box is selected, the base point continues with
unconstrained motion if it reaches an endpoint and leaves the
spline on the follower. The direction of motion at the instant the
base point leaves the constraint is tangent to the spline.

If the check box is not selected, and the base point attempts to
leave the spline on the follower, the simulation stops with an
error. The default is not selected.

11-168

Point-Curve Constraint

Edit spline...
Click here to open the optional Edit spline dialog.

The Edit spline dialog provides alternative numerical entry and
graphical editing methods for defining the constraint spline. But
it can define only two-dimensional curves in the x-y coordinate
directions on the follower Body. The Edit spline editor ignores
any z-components in existing breakpoints.

Edit Spline The numerical entry area lies on the left side of the Edit spline dialog,
the graphical editing area on the right side.

11-169

Point-Curve Constraint

Point-Curve Constraint Spline Editor

Graphical Editing of Spline Points

1 To place a breakpoint in the graphical display, place your cursor at
the position where you want the breakpoint. The Location display

11-170

Point-Curve Constraint

in the lower right indicates your current cursor coordinates in the
curve display.

2 Then click at the desired point. A circle appears where you clicked,
and simultaneously, the breakpoint is listed in the Breakpoints
(x-y) list.

Continuing to add breakpoints generates the spline (red curve).

3 Use the Graphical toolbar controls to edit the spline graphically in
the display:

• Remove points by clicking on the Delete breakpoints icon. Your
cursor turns into an eraser symbol. With it, select and click the
breakpoints you want to delete.

• Insert new (interior) breakpoints by clicking on the Insert
breakpoints icon. Your cursor acquires a small circle. Click
on the positions, near the existing curve, where you want the
new breakpoints. The editor modifies the spline to fit the new
breakpoints.

• Add new endpoints and extend the curve by clicking on the
Append breakpoints icon. Your cursor acquires a small circle.
Click on the positions, near the existing endpoints, to where you
want to extend the curve. The editor modifies the spline to fit the
new endpoints.

11-171

Point-Curve Constraint

• Move existing endpoints by clicking the Move breakpoints icon.
Click and drag the breakpoints you want to move, then drop them
where you want them.

The editor modifies both the spline red curve in the graphical display
and the Breakpoints (x-y) list as you make these changes.

Additional graphical toolbar controls:

• Zoom In/Zoom Out and Auto Fit: Standard MATLAB Graphics
zooming and auto resizing of graphics display.

• Axes properties: Edit properties of graphical display.

• Grid On/Off: Turn the graphical display x-y grid on or off.

Numerical Editing of Spline Points

Use the numerical entry controls, instead of the graphical editing tools,
to edit breakpoints by text entry.

Breakpoints (x-y)
You can also add, delete, and edit the breakpoints via this
breakpoints list:

• Select an existing breakpoint by highlighting it with your
cursor.

• Add a breakpoint by moving the highlighted selection to the
empty line below the last breakpoint with your cursor control.

• In the x: and y: fields, enter the x- and y-coordinates of the
currently selected breakpoint.

Add/Update Breakpoint
After editing an existing breakpoint or entering a new one in the
x:–y: fields, update the breakpoint list by clicking here.

The new or changed breakpoint appears in the graphical display
as a circle.

11-172

Point-Curve Constraint

Delete Point
Click here to delete the currently selected breakpoint.

Delete All
Click here to delete all the breakpoints in the breakpoint list.

End conditions
In the pull-down menu, choose the type of end (boundary)
condition on the spline curve. The possible conditions are
natural, not-a-knot, and periodic. The default is natural.

Closing the Edit Spline Dialog

Clicking Apply or OK updates the breakpoints stored in the main
Point-Curve Constraint dialog.

Previous breakpoint lists are stored in the history pull-down menus
of the main Point-Curve Constraint dialog’s Breakpoints list. This
history is destroyed if you close the main dialog, and only the current
breakpoint list is retained.

See Also Constraint & Driver Sensor

See “Modeling Constraints and Drivers” on page 4-38 for more on
restricting DoFs with Constraints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on using constraints in closed loops.

See “Constraints and Drivers” on page 10-5.

For more about representing curves as splines, see the Spline Toolbox
User’s Guide.

11-173

http://www.mathworks.com/access/helpdesk/help/toolbox/splines/splines.html

Prismatic

Purpose Represent prismatic joint with one translational degree of freedom

Library Joints

Description The Prismatic block represents a single translational degrees of freedom
(DoF) along a specified axis between two bodies. A prismatic joint is one
of SimMechanics primitive joints, along with revolute and spherical.

The Prismatic block is assembled: you must connect each side of the
Joint block to a Body block at a Body coordinate system (CS) point,
and the origins of these Body CSs must lie along the prismatic axis, to
within assembly tolerances. These Body CS origins do not need to be
collocated in space.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify a reference CS to define
the direction of the joint axis.

Prismatic Motion of Follower (blue) Relative to Base (red)

11-174

Prismatic

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis.

Current base
When you connect the base (B) connector port on the Prismatic
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Prismatic Base and Follower Body Connector Ports.

Current follower
When you connect the follower (F) connector port on the Prismatic
block to a Body CS Port on a Body, this parameter is automatically

11-175

Prismatic

reset to the name of this Body CS. See the following figure,
Prismatic Base and Follower Body Connector Ports.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motion of a Prismatic is specified in linear units.

Prismatic Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. They specify the direction of
the translational DoF that the Prismatic represents.

Name
This column automatically displays the name of each primitive
joint contained in the Joint block. For Prismatic, there is only one
primitive joint, a prismatic, labeled P1.

11-176

Prismatic

Primitive
This column automatically displays the type of each primitive
joint contained in the Joint block. For Prismatic, there is only one
primitive type, labeled Prismatic.

Axis of translation [x y z]
Enter here as a three-component vector the directional axis along
which this translational DoF can move. The default vector is [0 0
1]. The axis is a directed vector whose overall sign matters.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of translation is oriented with respect to. This CS
also determines the absolute meaning of force and motion along
the joint axis. The default is World.

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

11-177

Prismatic

See Also Disassembled Prismatic, Joint Actuator, Joint Initial Condition
Actuator, Joint Sensor, Joint Stiction Actuator, Revolute, Spherical

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-178

Revolute

Purpose Represent assembled revolute joint with one rotational degree of
freedom

Library Joints

Description The Revolute block represents a single rotational degrees of freedom
(DoF) about a specified axis between two bodies. The rotational sense is
defined by the right-hand rule. A revolute joint is one of SimMechanics
primitive joints, along with prismatic and spherical.

The Revolute block is assembled: you must connect each side of the
Joint block to a Body block at a Body coordinate system (CS) point, and
the origins of these Body CSs must be spatially collocated points, to
within assembly tolerances.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify a reference CS to define
the direction of the joint axis.

Revolute Motion of Follower (blue) Relative to Base (red)

11-179

Revolute

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower rotating in the right-hand rule
about the rotation axis.

Current base
When you connect the base (B) connector port on the Revolute
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Revolute Base and Follower Body Connector Ports.

Current follower
When you connect the follower (F) connector port on the Revolute
block to a Body CS Port on a Body, this parameter is automatically

11-180

Revolute

reset to the name of this Body CS. See the following figure,
Revolute Base and Follower Body Connector Ports.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motion of a Revolute is specified in angular units.

Revolute Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. They specify the direction of
the rotation axis of the DoF that the Revolute represents.

Name
This column automatically displays the name of each primitive
joint contained in the Joint block. For Revolute, there is only one
primitive joint, a revolute, labeled R1.

11-181

Revolute

Primitive
This column automatically displays the type of each primitive
joint contained in the Joint block. For Revolute, there is only one
primitive type, labeled Revolute.

Axis of rotation [x y z]
Enter here as a three-component vector the directional axis about
which this rotational DoF can move. The default vector is [0 0
1]. The axis is a directed vector whose overall sign matters.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of rotation is oriented with respect to. This CS also
determines the absolute meaning of torque and motion about the
joint axis. The default is World.

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

11-182

Revolute

See Also Disassembled Revolute, Joint Actuator, Joint Initial Condition Actuator,
Joint Sensor, Joint Stiction Actuator, Prismatic, Spherical

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-183

Revolute-Revolute

Purpose Represent composite joint composed of two revolute primitives spatially
separated by massless connector of constant length

Library Joints/Massless Connectors

Description The Revolute-Revolute block represents a composite joint composed of
two revolute joint primitives. The Body coordinate systems (CSs) on
either side of the Joint are each connected to a revolute primitive. The
primitives are separated spatially by a vector of constant length but
variable direction connecting the two Body CS origins. Both revolute
primitives are assembled.

Caution This joint becomes singular if the two revolute primitive axes
align with the vector separating the primitives. The simulation stops
with an error in this case.

You specify the two revolute axes of these two joint primitives in the
dialog. The distance separation between the two axes is computed
automatically from the Body CS origins to which the Joint is connected.
This distance separation (the magnitude of the vector between the Body
CS origins) remains fixed at its initial value during the simulation.
This initial value must be nonzero.

You cannot connect an Actuator or Sensor to a Massless Connector.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify a reference CS to define
the directions of the joint axes.

11-184

Revolute-Revolute

Massless Connector Between Revolute and Revolute Joints

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

11-185

Revolute-Revolute

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of
positive motion. Positive rotation is the base or follower rotating in the
right-handed sense about its respective rotation axis.

Current base
When you connect the base (B) connector port on the
Revolute-Revolute block to a Body CS Port on a Body, this
parameter is automatically reset to the name of this Body CS. See
the following figure, Revolute-Revolute Base and Follower Body
Connector Ports.

Current follower
When you connect the follower (F) connector port on the
Revolute-Revolute block to a Body CS Port on a Body, this
parameter is automatically reset to the name of this Body CS. See
the following figure, Revolute-Revolute Base and Follower Body
Connector Ports.

Revolute-Revolute Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. They specify the direction of
the rotation axes of these DoFs that the Revolute-Revolute represents.

11-186

Revolute-Revolute

Name
This column automatically displays the name of each primitive
joint contained in the Joint block. For Revolute-Revolute, there
are two revolute primitives, labeled R1 and R2, connecting to base
and follower, respectively.

Primitive
This column automatically displays the type of each primitive
joint contained in the Joint block. For Revolute-Revolute, there is
only one primitive type, labeled Revolute.

Axis of Action [x y z]
Enter here as a three-component vector the directional axis about
which these rotational DoFs can move. The default vectors are [0
0 1] and [0 1 0]. The axes are directed vectors whose overall
signs matter.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axes of rotation are oriented with respect to. These CSs
also determine the absolute meaning of torque and motion about
the primitive axes. The defaults are World.

11-187

Revolute-Revolute

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Revolute

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Massless Connectors.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-188

Revolute-Spherical

Purpose Represent composite joint composed of revolute and spherical primitives
spatially separated by massless connector of constant length

Library Joints/Massless Connectors

Description The Revolute-Spherical block represents a composite joint composed of
a revolute and a spherical joint primitive. The base Body coordinate
system (CS) on one side of the Joint is connected to the revolute
primitive, and the follower Body CS is connected to the spherical
primitive. The primitives are separated spatially by a vector of constant
length but variable direction connecting the two Body CS origins. Both
primitives are assembled.

Caution This joint becomes singular if the revolute primitive axis
aligns with the vector separating the primitives. The simulation stops
with an error in this case.

You specify the revolute axis of the revolute joint primitives in the
dialog. The distance separation between the two axes is computed
automatically from the Body CS origins to which the Joint is connected.
This distance separation (the magnitude of the vector between the Body
CS origins) remains fixed at its initial value during the simulation.
This initial value must be nonzero.

You cannot connect an Actuator or Sensor to a Massless Connector.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify a reference CS to define
the direction of the joint axis.

11-189

Revolute-Spherical

Massless Connector Between Revolute and Spherical Joints

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

11-190

Revolute-Spherical

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the base rotating in the right-handed
sense about its rotation axis or the follower pivoting as shown for the
Spherical Joint.

Current base
When you connect the base (B) connector port on the
Revolute-Spherical block to a Body CS Port on a Body, this
parameter is automatically reset to the name of this Body CS.
See the following figure, Revolute-Spherical Base and Follower
Body Connector Ports.

Current follower
When you connect the follower (F) connector port on the
Revolute-Spherical block to a Body CS Port on a Body, this
parameter is automatically reset to the name of this Body CS.
See the following figure, Revolute-Spherical Base and Follower
Body Connector Ports.

Revolute-Spherical Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. They specify the direction of
the rotation axis of one of the DoFs that Revolute-Spherical represents.

11-191

Revolute-Spherical

Name
This column automatically displays the name of each primitive
joint contained in the Joint block. For Revolute-Spherical, there
are one revolute and one spherical primitive, labeled R1 and S,
connecting to base and follower, respectively.

Primitive
This column automatically displays the type of each primitive
joint contained in the Joint block. For Revolute-Spherical, there
are two primitive types, labeled Revolute and Spherical.

Axis of Action [x y z]
Enter here as a three-component vector the directional axis about
which the rotational DoF can move. The default vector is [0 0
1]. The axis is a directed vector whose overall sign matters.

This field is not active for the Spherical primitive.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of rotation is oriented with respect to. This CS also
determines the absolute meaning of torque and motion about the
primitive axis. The default is World.

This field is not active for the Spherical primitive.

11-192

Revolute-Spherical

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Revolute, Spherical

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Massless Connectors.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-193

RotationMatrix2VR

Purpose Convert 3-by-3 rotation matrix to equivalent VRML form of rotation
axis and angle

Library Utilities

Description A rotation with respect to an initial orientation has many equivalent
representations. A common and important one is the 3-by-3 orthogonal
rotation matrix R, where R-1 = RT and RTR = RRT = I, the 3-by-3
identity matrix. Another important representation is the combination
of rotation axis (a unit vector n) and angle of rotation θ about that axis.
The sign of rotation follows the right-hand-rule.

The RotationMatrix2VR block converts the 3-by-3 rotation matrix
representation of orientation to its equivalent representation as a
rotation axis and angle about that axis, the form used in Virtual Reality
Modeling Language (VRML) for orienting bodies. The input and output
signals are bundled Simulink signals.

The most common use of rotations is to represent the orientation of a
body with respect to some coordinate system (CS) axes.

Dialog
Box and
Parameters

The dialog has no active areas.

Representations of Rotation Signals

The rotation matrix R has the form:

11-194

RotationMatrix2VR

R R R
R R R
R R R

11 12 13

21 22 23

31 32 33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

The input signal to the RotationMatrix2VR block is the R matrix
components passed column-wise and bundled into a single 9-component
Simulink signal: [R11 R21 R31 R12 ...].

The output signal is the equivalent rotation represented as the axis of
rotation, a unit vector n = (nx,ny,nz), with

n·n = nx
2 + ny

2 + nz
2 = 1,

and the angle of rotation θ about that axis. The sign of the rotation
follows the right-hand rule. The output signal is bundled into a single
4-component Simulink signal:

[nx ny nz θ].

See Also Body

See “Body Motion in SimMechanics” on page 3-4 and “How
SimMechanics Represents Body Orientation” on page 3-11 for more
details on representing body rotations.

See entries on axis-angle rotation, Euler angles, quaternion, and
rotation matrix in the Glossary for summaries of body orientation
representations.

For more on virtual reality and VRML, see the “Virtual Reality Toolbox
User’s Guide”.

11-195

Screw

Purpose Represent composite joint with one translational DoF and one rotational
DoF, with parallel translation and rotation axes and linear pitch
constraint between translational and rotational motion

Library Joints

Description The Screw block represents a composite joint with one translational
degrees of freedom (DoF) as one prismatic primitive and one rotational
DoF as one revolute primitive. The translation and rotation axes are
parallel. The translational and rotational DoFs are constrained by a
pitch constraint to have proportional motion.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Screw block is assembled: the origins
of these Body CSs must lie along the primitive axes. But the Body CS
origins on either side of the Joint do not need to be spatially collocated
points.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify a reference CS to define
the direction of the joint axis.

11-196

Screw

Dialog
Box and
Parameters

11-197

Screw

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower moving around the rotational
axis following the right-hand rule.

Current base
When you connect the base (B) connector port on the Screw block
to a Body CS Port on a Body, this parameter is automatically reset
to the name of this Body CS. See the following figure, Screw Base
and Follower Body Connector Ports.

The base Body is automatically connected to the joint primitive R1
in the primitive list in Parameters.

Current follower
When you connect the follower (F) connector port on the Screw
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure, Screw
Base and Follower Body Connector Ports.

The follower Body is automatically connected to the joint primitive
R1 in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motion of revolute primitives is specified in angular units.

Screw Base and Follower Body Connector Ports

11-198

Screw

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
Screw has an entry line. These lines specify the direction of the axes of
action of the DoFs that the Screw represents.

Name - Primitive
The primitive list states the name and type of the joint primitive
that makes up the Screw block: revolute primitive R1.

Axis of Action [x y z]
Enter here as a three-component vector the directional
axes defining the allowed motions of this primitive and its
corresponding DoF:

• Revolute: axis of rotation

The default vectors are shown in the dialog above. The axis is a
directed vector whose overall sign matters.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

The thread pitch controls the amount of translation for each turn of
the screw.

Thread pitch
Linear distance the screw travels along the screw axis for each
complete revolution of 2π radians (360o). The default is 1.

In pull-down menu, select units. The default is mm (millimeters).

11-199

Screw

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Cylindrical, Prismatic, Revolute

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-200

Shared Environment

Purpose Connect two mechanical components so that they share same
mechanical environment

Library Bodies

Description The Shared Environment block provides a nonphysical connection
between two independent mechanical block diagrams, or submachines.
The block carries no inertia, adds no joints, imposes no constraints, and
transfers no motion, force, or torque between the SimMechanics blocks
to which it is connected.

You can use this block to connect two independent machines into one
machine, so that the two submachines then share the same machine
environment. Making this connection does not change the structure or
dynamics of either submachine.

Caution The two connected submachines have to be independently
valid, and each submachine requires at least one Ground block.

The resulting composite machine needs exactly one Machine
Environment block, not two.

Dialog
Box and
Parameters

This block has no parameters.

See Also Ground, Machine Environment

11-201

Six-DoF

Purpose Represent composite joint with three translational and three rotational
DoFs

Library Joints

Description The Six-DoF block represents a composite joint with three translational
degrees of freedom (DoFs) as three prismatic primitives and three
rotational DoFs as one spherical primitives. There are no constraints
among the primitives. Unlike Bushing, Six-DoF represents the
rotational DoFs as one spherical, rather than as three revolutes.

Caution A joint with three prismatic primitives becomes singular if two
or three of the translation axes become parallel. The simulation stops
with as error in this case.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Six-DoF block is assembled: the
origins of these Body CSs must lie along the primitive axes, and the
Body CS origins on either side of the Joint must be spatially collocated
points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify reference CSs to define the
directions of the joint axes.

11-202

Six-DoF

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis. Positive spherical motion is the follower rotating
in the right-handed sense as shown in the Spherical block figure.

Current base
When you connect the base (B) connector port on the Six-DoF
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Six-DoF Base and Follower Body Connector Ports.

11-203

Six-DoF

The base Body is automatically connected to the first joint
primitive P1 in the primitive list in Parameters.

Current follower
When you connect the follower (F) connector port on the Six-DoF
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Six-DoF Base and Follower Body Connector Ports.

The follower Body is automatically connected to the last joint
primitive S in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motion of prismatic primitives is specified in linear units.
The motion of spherical primitives is specified by a dimensionless
quaternion.

Six-DoF Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
Six-DoF has an entry line. These lines specify the direction of the axes
of action of the DoFs that the Six-DoF represents.

Name - Primitive
The primitive list states the names and types of joint primitives
that make up the Six-DoF block: prismatic primitives P1, P2, P3,
and spherical primitive S.

11-204

Six-DoF

Axis of Action [x y z]
Enter here as a three-component vector the directional axes
defining the allowed motions of these primitives and their
corresponding DoFs:

• Prismatic: axis of translation

• Spherical: field is not active

The default vectors are shown in the dialog above. The axis is a
directed vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the
prismatic axes can be parallel.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

11-205

Six-DoF

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Bushing, Gimbal, Prismatic, Spherical

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-206

Spherical

Purpose Represent assembled spherical joint with three rotational degrees of
freedom

Library Joints

Description The Spherical block represents three rotational degrees of freedom
(DoFs) at a single pivot point, a "ball-in-socket" joint. Two rotational
DoFs specify a directional axis, and a third rotational DoF specifies
rotation about that directional axis. The sense of each rotational DoF is
defined by the right-hand rule, and the three rotations together form
a right-handed system. A spherical joint is one of the SimMechanics
primitive joints, along with prismatic and revolute.

The Spherical block is assembled: you must connect each side of the
Joint block to a Body block at a Body coordinate system (CS) point,
and the origins of these Body CSs must be spatially collocated points,
within assembly tolerances.

You cannot connect an Actuator to a Spherical. Unlike the Gimbal
block, the Spherical block cannot become singular.

You can connect all Joint blocks to two and only two Body blocks, and
Joints have a default of two connector ports for connecting to base and
follower Bodies.

Any Joint block represents only the abstract relative motion of two
bodies, not the bodies themselves.

11-207

Spherical

Spherical Motion of Follower (blue) Relative to Base (red)

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

11-208

Spherical

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower rotating in the right-hand sense
as shown in the figure above.

Current base
When you connect the base (B) connector port on the Spherical
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Spherical Base and Follower Body Connector Ports.

Current follower
When you connect the follower (F) connector port on the Spherical
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Spherical Base and Follower Body Connector Ports.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Sensor blocks to this
Joint. The default is 0. A Spherical cannot be connected to a
Joint Actuator.

The motion of a Spherical is three DoFs specified in quaternion
form.

Spherical Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are automatic. They specify the
orientation of the spherical DoF that the Spherical represents.

11-209

Spherical

Name
This column automatically displays the name of each primitive
joint contained in the Joint block. For Spherical, there is only one
primitive joint, a spherical, labeled S.

Primitive
This column automatically displays the type of each primitive
joint contained in the Joint block. For Spherical, there is only one
primitive type, labeled Spherical.

Reference orientation [x y z]
This field is not active.

Reference CS
This field is not active.

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

11-210

Spherical

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Disassembled Spherical, Gimbal, Joint Sensor, Prismatic, Revolute

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-211

Spherical-Spherical

Purpose Represent composite joint composed of two spherical primitives
spatially separated by massless connector of constant length

Library Joints/Massless Connectors

Description The Spherical-Spherical block represents a composite joint composed
of two spherical joint primitives. The Body coordinate system (CSs) on
either side of the Joint are connected to the spherical primitives. The
primitives are separated spatially by a vector of constant length but
variable direction connecting the two Body CS origins. Both primitives
are assembled.

The distance separation between the two axes is computed automatically
from the Body CS origins to which the Joint is connected. This distance
separation (the magnitude of the vector between the Body CS origins)
remains fixed at its initial value during the simulation. This initial
value must be nonzero.

You cannot connect an Actuator or Sensor to a Massless Connector.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify a reference CS to define
the directions of the joint axes.

11-212

Spherical-Spherical

Massless Connector Between Spherical and Spherical Joints

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the base or follower pivoting as shown by
the motion figure in the Spherical block reference page.

11-213

Spherical-Spherical

Current base
When you connect the base (B) connector port on the
Spherical-Spherical block to a Body CS Port on a Body, this
parameter is automatically reset to the name of this Body CS.
See the following figure, Spherical-Spherical Base and Follower
Body Connector Ports.

Current follower
When you connect the follower (F) connector port on the
Spherical-Spherical block to a Body CS Port on a Body, this
parameter is automatically reset to the name of this Body CS.
See the following figure, Spherical-Spherical Base and Follower
Body Connector Ports.

Spherical-Spherical Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are automatic. They specify the
orientation of the spherical DoFs that the Spherical-Spherical
represents.

11-214

Spherical-Spherical

Name
This column automatically displays the name of each primitive
joint contained in the Joint block. For Spherical-Spherical, there
are two spherical primitives, labeled S1 and S2, connecting to
base and follower, respectively.

Primitive
This column automatically displays the type of each primitive
joint contained in the Joint block. For Spherical-Spherical, there
is only one primitive type, labeled Spherical.

Axis of Action [x y z]
These fields are not active.

Reference CS
These fields are not active.

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

11-215

Spherical-Spherical

See Also Spherical

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Massless Connectors.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-216

Telescoping

Purpose Represent composite joint with one translational and three rotational
DoFs

Library Joints

Description The Telescoping block represents a composite joint with one
translational degrees of freedom (DoF) as one prismatic primitive
and three rotational DoFs as one spherical primitive. There are
no constraints among the primitives. Unlike Bearing, Telescoping
represents the rotational DoFs as one spherical, rather than as three
revolutes.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Telescoping block is assembled: the
origins of these Body CSs must lie along the primitive axes, and the
Body CS origins on either side of the Joint must be spatially collocated
points, to within assembly tolerances

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify a reference CS to define
the direction of the joint axis.

11-217

Telescoping

Dialog
Box and
Parameters

11-218

Telescoping

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis. Positive spherical motion is the follower rotating
in the right-handed sense as shown in the Spherical block figure.

Current base
When you connect the base (B) connector port on the Telescoping
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Telescoping Base and Follower Body Connector Ports.

The base Body is automatically connected to the first joint
primitive S in the primitive list in Parameters.

Current follower
When you connect the follower (F) connector port on the
Telescoping block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Telescoping Base and Follower Body Connector Ports.

The follower Body is automatically connected to the last joint
primitive P1 in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motion of prismatic primitives is specified in linear units.
The motion of spherical primitives is specified by a dimensionless
quaternion.

11-219

Telescoping

Telescoping Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
Telescoping has an entry line. These lines specify the direction of the
axes of action of the DoFs that Telescoping represents.

Name - Primitive
The primitive list states the names and types of joint primitives
that make up the Telescoping block: spherical primitive S and
prismatic primitives P1.

Axis of Action [x y z]
Enter here as a three-component vector the directional axes
defining the allowed motions of these primitives and their
corresponding DoFs:

• Prismatic: axis of translation

• Spherical: field is not active

The default vectors are shown in the dialog above. The axis is a
directed vector whose overall sign matters.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

11-220

Telescoping

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Bearing, Prismatic, Six-DoF, Spherical

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-221

Universal

Purpose Represent composite joint with two rotational DoFs

Library Joints

Description The Universal block represents a composite joint with two rotational
degrees of freedom (DoFs) as two revolute primitives. There are no
constraints among the primitives.

Caution A joint with two revolute primitives becomes singular if the
two rotation axes become parallel (“gimbal lock”). The simulation stops
with an error in this case.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Universal block is assembled: the
origins of these Body CSs must be spatially collocated points, within
assembly tolerances

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves. You must specify reference CSs to define the
directions of the joint axes.

11-222

Universal

Dialog
Box and
Parameters

11-223

Universal

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive rotation is the follower moving around the rotational
axis following the right-hand rule.

Current base
When you connect the base (B) connector port on the Universal
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Universal Base and Follower Body Connector Ports.

The base Body is automatically connected to the first joint
primitive R1 in the primitive list in Parameters.

Current follower
When you connect the follower (F) connector port on the Universal
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure,
Universal Base and Follower Body Connector Ports.

The follower Body is automatically connected to the last joint
primitive R2 in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Actuator and Joint
Sensor blocks to this Joint. The default is 0.

The motion of revolute primitives is specified in angular units.

11-224

Universal

Universal Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in
Universal has an entry line. These lines specify the direction of the axes
of action of the DoFs that the Universal represents.

Name - Primitive
The primitive list states the names and types of joint primitives
that make up the Universal block: revolute primitives R1, R2.

Axis of Action [x y z]
Enter here as a three-component vector the directional axes
defining the allowed motions of these primitives and their
corresponding DoFs:

• Revolute: axis of rotation

The default vectors are shown in the dialog above. The axis is a
directed vector whose overall sign matters.

To prevent singularities and simulation errors, the two revolute
axes cannot be parallel.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

11-225

Universal

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Gimbal, Revolute

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-226

Variable Mass & Inertia Actuator

Purpose Vary mass and inertia on body at specific body coordinate system as
function of time (not including thrust force or torque)

Library Sensors & Actuators

Description The Variable Mass & Inertia Actuator block allows you to vary the mass
m and/or inertia tensor I of the Body to which it is connected. The
general form of Newton’s second law for linear or angular motion is

(mass or inertia) * acceleration = external force or torque

This block externally varies the leftmost parameter in this law of
motion with a Simulink signal.

Caution The Variable Mass & Inertia Actuator does not apply any
thrust forces or torques associated with the Body’s mass loss or gain.
Such thrust effects would occur on the left-hand side of the force or
torque law as terms proportional to the time derivatives of the mass
or inertia tensor, dm/dt or dI/dt, multiplied by the related thrust
velocities. You must separately apply such thrust forces or torques to
the Body with Body Actuators.

How the Actuator Varies a Body’s Mass and Inertia Tensor

You connect the Variable Mass & Inertia Actuator block to the original,
user-supplied Body at a Body coordinate system (CS). You can connect
multiple Variable Mass & Inertia Actuators to a single Body, each
Actuator at a separate Body CS port. If Body CS ports are lacking, open
the Body dialog and create them as needed.

At each Body CS so connected, the Variable Mass & Inertia Actuator
creates an invisible body. The attachment is equivalent to connecting
another Body with a Weld, except that the other body’s mass properties
vary with time. This invisible body has a time-varying mass and/or
symmetric inertia tensor supplied by the external Simulink signal. The
center of gravity coordinate system (CG CS) of the invisible body is

11-227

Variable Mass & Inertia Actuator

identical to the attached Body CS. The inertia tensor of the invisible
body is evaluated at this CS, in this coordinate system’s axes.

The Composite Body

SimMechanics creates a combined or composite body, made of the
invisible, time-varying body created by the Actuator and the original,
user-supplied Body. The total mass of the composite body is the sum
of the visible Body and the invisible body’s masses. The CG of this
composite body is recomputed at each time step. The inertia tensor of
the composite body is formed at each time step by combining the inertia
tensors of the visible Body and the invisible body. The combined inertia
tensor is then evaluated at the composite body’s new CG.

What The Invisible Body Requires

The time-varying mass and inertia tensor of the invisible body must
satisfy these requirements:

• The mass and principal inertial moments can be positive, negative,
or zero.

The only restriction is that the total mass and the principal inertial
moments of the composite body be nonnegative.

• The time-varying inertia tensor of the invisible body must be
symmetric.

You can mix variable mass and/or variable inertia tensor actuation.

Actuation Effect on Connected Body

Variable mass alone Adds a time-varying point mass at the
attached Body CS

11-228

Variable Mass & Inertia Actuator

Actuation Effect on Connected Body

Variable inertia tensor
alone

Adds time-varying inertia tensor at the
attached Body CS without changing the
composite body’s total mass

Variable mass and
inertia tensor combined

Adds invisible body with time-varying
mass and inertia tensor at the attached
Body CS

What Does Not Vary in the User-Supplied Body

While the invisible, attached body and the invisible composite body
have time-varying mass properties, you do not see any visible changes
in the original Body that you are actuating. The mass properties in
its dialog do not change.

If you are visualizing the varying-mass/inertia actuated Body as an
equivalent ellipsoid, the ellipsoid is rendered using the static data in
the Body dialog itself. The ellipsoid rendering ignores the effect of any
Variable Mass & Inertia Actuators attached to the Body. See “Rendering
Body Shapes in SimMechanics” on page 6-5.

Dialog
Box and
Parameters

The dialog has one active area, Actuation.

11-229

Variable Mass & Inertia Actuator

Actuation You can apply a variable mass, a variable inertia tensor, or both, to
a body.

If you apply both, you need to bundle the variable mass and inertia
tensor into a 10-component signal, in the order shown in the dialog.

Mass
Select the check box to apply an external time-varying mass
from the input Simulink signal. In the pull-down menu to the
right, select units for this time-varying mass. The default is kg
(kilograms).

Inertia tensor
Select the check box to apply an external time-varying inertia
tensor from the input Simulink signal. In the pull-down menu to
the right, select units for this time-varying inertia tensor. The
default is kg-m2 (kilogram-meters2).

The Simulink input signal has the following components. For variable
mass or inertia tensor actuation alone, omit the missing components.

Time-varying mass
(scalar)

Time-varying inertia tensor (9-vector):
(I11 , I21 , I31 , I12 , ...)

References [1] Corbin, H. C., and P. Stehle, Classical Mechanics, Second Edition,
New York, Dover Publications, 1994 (original edition, 1960), chapters
2, 5, and 9.

[2] Goldstein, H., Classical Mechanics, Second Edition, Reading,
Massachusetts, Addison-Wesley, 1980, chapters 4 and 5.

[3] Piscane, V. L., and R. C. Moore, eds., Fundamentals of Space
Systems, Johns Hopkins University/Applied Physics Laboratory Series,
New York, Oxford University Press, 1994, chapters 3, 4, and 5.

See Also Body, Body Actuator, Weld

11-230

Variable Mass & Inertia Actuator

See “Varying a Body’s Mass and Inertia Tensor” on page 4-49 for more
on varying the mass and inertia tensor of a body.

11-231

Velocity Driver

Purpose Specify linear combination of the linear and angular velocities of two
bodies as function of time

Library Constraints & Drivers

Description The Velocity Driver block drives a linear combination of the projected
translational and angular velocities of two Bodies. The velocities are
projected by inner products on to constant vectors you specify.

Let vB, vF be the two body velocity vectors and ωB, ωF be the two body
angular velocity vectors. Let cB, cF, dB, dF be constant vectors. The
subscripts ‘B’ and ‘F’ refer to base and follower bodies. The Velocity
Driver block specifies the linear combination :

Ω Ω= ⋅ + ⋅ ⋅ ⋅ = = +c v d c v dB B B B F F F F t f t ωω ωω− − () ()0

as a function of time f(t). You specify the vectors cB, cF, dB, dF. You also
connect a Driver Actuator block to the Velocity Driver.

The Simulink input signal into the Driver Actuator specifies the
time-dependent driving function f(t) and its first two derivatives, as
well as their units. If you do not actuate Velocity Driver, this block
acts as a time-independent constraint that freezes the constraint linear
combination at its initial value (t=0) during the simulation.

Drivers restrict relative degrees of freedom (DoFs) between a pair of
bodies as specified functions of time. Locally in a machine, they replace
a Joint as the expression of the DoFs. Globally, Driver blocks must occur
topologically in closed loop. Like Bodies connected to a Joint, the two
Bodies connected to a Drivers are ordered as base and follower, fixing
the direction of relative motion.

You can also connect a Constraint & Driver Sensor to any Driver block
and measure the reaction forces/torques between the driven bodies.

11-232

Velocity Driver

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

11-233

Velocity Driver

Connection
Parameters

The base (B)-follower (F) Body sequence determines the sense of positive
motion. Positive translation is the follower moving in the direction of
the translation axis. Positive rotation is the follower rotating in the
right-handed sense about the rotation axis.

Current base
When you connect the base (B) connector port on the Velocity
Driver block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Velocity Driver Base and Follower Body Connector Ports.

Current follower
When you connect the follower (F) connector port on the Velocity
Driver block to a Body CS Port on a Body, this parameter is
automatically reset to the name of this Body CS. See the following
figure, Velocity Driver Base and Follower Body Connector Ports.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Driver Actuator and
Constraint & Driver Sensor blocks to this Driver. The default is 0.

To activate the Driver, connect a Driver Actuator.

Velocity Driver Base and Follower Body Connector Ports

Parameters The Parameters fields are grouped into three sets, Units, Base
velocity coefficients, and Follower velocity coefficients.

11-234

Velocity Driver

Units

The vectors cB, cF, dB, dF carry the implicit units conversion to convert
all velocities to the common linear velocity units of f(t) that you set in
the Driver Actuator connected to the Velocity Driver block.

Angular velocity
From the pull-down menu, choose the common units for all
angular velocities. The default is deg/s (degrees/second).

The vectors dB and dF implicitly carry the units conversion of
length/angle. The driving function f(t) has the linear velocity
units that you set in the Driver Actuator block that you connect to
Velocity Driver. If the f(t) units differ from the units set in Linear
velocity units in this dialog, the vectors dB and dF implicitly
carry the additional units conversion.

Linear velocity
From the pull-down menu, choose the common units for all linear
velocities. The default is m/s (meters/second).

The driving function f(t) has the linear velocity units that you
set in the Driver Actuator block that you connect to the Velocity
Driver. If the f(t) units differ from the units set here, the vectors
cB and cF implicitly carry the units conversion.

Base Velocity Coefficients

Angular velocity
Under [x y z], enter the Angular velocity coefficient vectors
for the base Body. These are the components of dB. The default
is [1 0 0].

In the Fixed in CS pull-down menu, choose which set of
coordinates axes, World or Base, define the vector coefficients of
the angular velocity. The default is WORLD.

11-235

Velocity Driver

Linear Velocity
Under [x y z], enter the Linear velocity coefficient vectors for
the base Body. These are the components of cB. The default is
[1 0 0].

In the Fixed in CS pull-down menu, choose which set of
coordinates axes, World or Base, define the vector coefficients of
the linear velocity. The default is WORLD.

Follower Velocity Coefficients

Angular velocity
Under [x y z], enter the Angular velocity coefficient vector for
the follower Body. These are the components of dF. The default
is [1 0 0].

In the Fixed in CS pull-down menu, choose which set of
coordinates axes, World or Follower, define the vector coefficients
of the angular velocity. The default is WORLD.

Linear Velocity
Under [x y z], enter the Linear velocity coefficient vector for
the base Body. These are the components of cF. The default is
[1 0 0].

In the Fixed in CS pull-down menu, choose which set of
coordinates axes, World or Follower, define the vector coefficients
of the linear velocity. The default is WORLD.

See Also Angle Driver, Constraint & Driver Sensor, Driver Actuator, Parallel
Constraint

See “Modeling Constraints and Drivers” on page 4-38 for more on
restricting DoFs with Drivers.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on using drivers in closed loops.

See “Constraints and Drivers” on page 10-5.

11-236

Weld

Purpose Represent joint with no DoFs

Library Joints

Description The Weld block represents a joint with no degrees of freedom (DoFs).
The two Bodies connected to either side of the Weld block are locked
rigidly to one another, with no possible relative motion.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Weld block is assembled: the origins
of these Body CSs must lie along the primitive axes, within assembly
tolerancesBut the Body CS origins on either side of the Joint do not
have to be spatially collocated points.

You must connect any Joint block to two and only two Body blocks,
and Joints have a default of two connector ports for connecting to base
and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies,
not the bodies themselves.

11-237

Weld

Dialog
Box and
Parameters

The dialog has two active areas, Connection parameters and
Parameters.

Connection
Parameters

Current base
When you connect the base (B) connector port on the Weld block
to a Body CS Port on a Body, this parameter is automatically reset
to the name of this Body CS. See the following figure, Weld Base
and Follower Body Connector Ports.

The base Body is automatically connected to the joint primitive W
in the primitive list in Parameters.

Current follower
When you connect the follower (F) connector port on the Bushing
block to a Body CS Port on a Body, this parameter is automatically
reset to the name of this Body CS. See the following figure, Weld
Base and Follower Body Connector Ports.

11-238

Weld

The follower Body is automatically connected to the joint primitive
W in the primitive list in Parameters.

Number of sensor/actuator ports
Using this spinner menu, you can set the number of extra
connector ports needed for connecting Joint Sensor blocks to this
Joint. The default is 0.

You cannot actuate a Weld joint, and a Weld joint undergoes no motion.
A Joint Sensor measures zero motion, but in general nonzero reaction
forces, at this joint.

Weld Base and Follower Body Connector Ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are inactive for Weld. This block has
no DoF primitives.

Name - Primitive
The primitive list states the names and types of joint primitives
that make up the Weld block: a rigid primitive W representing
no motion.

Axis of Action [x y z]
This field is inactive.

Reference CS
Using the pull-down menu, choose the coordinate system (World,
the base Body CS, or the follower Body CS) whose coordinate axes
the vector axis of action is oriented with respect to. This CS also
determines the absolute meaning of forces/torques and motion
along/about the joint axis. The default is World.

11-239

Weld

The Advanced pane is optional. You use it to control the way
SimMechanics interprets the topology of your schematic diagram.

Mark as the preferred cut joint
In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for
cutting during the simulation, select the check box. The default
is not selected.

See Also Distance Driver

See “Modeling Joints” on page 4-20 for more on representing DoFs with
Joints.

See “Verifying Machine Topology” on page 4-74 and “How SimMechanics
Works” on page 5-15 for more on closed loops and cutting.

11-240

12

Commands — Alphabetical
List

import_physmod

Purpose Generate SimMechanics model from Physical Modeling XML file

Syntax import_physmod
import_physmod('-license')
import_physmod('filename.xml')
import_physmod('filename.xml', option1, value1, option2,

value2, ...)

Synopsis import_physmod with no arguments opens the Physical Modeling
XML File Import dialog. From the dialog, you select the XML file to
import and the command options. See “Import Dialog” on page 12-3.

import_physmod('-license') displays the third-party license for use
of this command. This license information also appears automatically
the first time you use the command.

import_physmod('filename.xml') generates a SimMechanics model
from a Physical Modeling XML file filename.xml. The .xml extension
for the filename argument is optional. For a computer-aided design
(CAD)-generated XML file, the name of the generated model is the same
as the original CAD assembly, regardless of the name of the XML file.

import_physmod('filename.xml', option1, value1, option2,
value2, ...) generates the SimMechanics model filename.mdl from
filename.xml using the specified option-value pairs when importing.
The .xml extension for the filename argument is optional. See “Input
Arguments” on page 12-3 following.

Description You use this command to generate a dynamic Simulink block diagram
model from a Physical Modeling XML file.

The Physical Modeling XML file can be one created by exporting a CAD
assembly, for example. You export the Physical Modeling XML file that
represents the CAD assembly from your CAD platform through a CAD
translator.

The second and final step is to import this Physical Modeling XML file
into SimMechanics with the import_physmod command. The command

12-2

import_physmod

creates a SimMechanics model from the information in the Physical
Modeling XML file. You can then save, rename, edit, and run the model.

Input
Arguments

The input file must be a Physical Modeling XML file. The input
filename must have the .xml extension, but the .xml extension in the
filename command argument is optional.

You can execute this command with no input arguments. See “Import
Dialog” on page 12-3.

The command options and values follow. At each invocation of
import_physmod, MATLAB assumes the default options unless you
explicitly specify different option values.

Option Value

'Direction' Diagram growth direction: either 'LR' (diagram grows
from left to right; default) or 'TB' (diagram grows from
top to bottom). Default: 'LR'

'FontSize' Font size in pixels for the block labels. Default: 10

'UseDefaultJointNames' Joint naming: either 'on' (use default joint names like
Revolute1, Revolute2, etc., and ignore the full joint
names specified in the Physical Modeling XML file) or
'off' (use the joint names from the Physical Modeling
XML file). Default: 'on'

'UseBlockNamesForSpacing' Block spacing: either 'on' (blocks are spaced so that
their names do not overlap) or 'off' (use a universal
spacing to evenly space all blocks). Default: 'off'

Import
Dialog

If you enter import_physmod at the command line with no input
arguments, the Physical Modeling XML File Import dialog opens.
This dialog provides the same control over generating SimMechanics
models from Physical Modeling XML files as does the command with
input arguments. However, at each invocation of this dialog, MATLAB

12-3

import_physmod

remembers the last set of import options that you set in this dialog
and not the default options.

Click OK to complete the command input and start the file import,
Cancel to stop the file import, and Help to open online documentation
for this dialog.

The dialog has two active areas, File and Block Format.

File
Enter the name of a Physical Modeling XML file, including its
absolute path on your system. This field replaces the filename
argument of the import_physmod command. There is no default
filename.

You can search for files with a file browser by clicking the ...
button. Clicking this button opens the Import File browser in
the current working directory. Search for and select a Physical
Modeling XML file. Close the browser by clicking Open or
Cancel.

If you click Open in the browser, the selected filename is copied
to the File field. The name includes the file’s absolute path on
your operating system.

12-4

import_physmod

Block Format: Direction
Select one of two block diagram growth directions in the generated
model, Horizontal or Vertical. This option replaces the
Direction option of the import_physmod command. The default
is Horizontal.

Block Format: Font Size
From the pull-down menu, select a font size in pixels for the block
labels in the generated model. This option replaces the FontSize
option of the import_physmod command. The default is 10.

Block Format: Use default joint names
Select this check box to ensure that Joint blocks in the generated
model have short, default names that do not include the full model
hierarchy. Clearing this check box ensures that the Joint block
names are long, containing the full model hierarchy, and take
up more space in your model.

The default is selected.

Block Format: Use block spacing based on block name length
Select this check box to enlarge the spacing between blocks in
the generated model if their names are long. Clearing this check
box leads to block spacing based only on the block sizes, not on
the block names.

The default is not selected.

Output
Model

The output model name is the same name as the original CAD assembly
from which the Physical Modeling XML file was exported and is
independent of the name of the XML file itself. You need to save the
model once import_physmod has generated it. You can change the
model’s name when you save it.

The import_physmod command generates a new SimMechanics model
by opening a model window and populating it with blocks.

• The entire model diagram is encapsulated in a subsystem.

12-5

import_physmod

• Subsystems below the top level encapsulate subassemblies from the
original CAD assembly.

• The machine includes one Ground and one Machine Environment
block.

• The other SimMechanics blocks are Bodies and Joints only,
corresponding to the parts, degrees of freedom (DoFs), and
constraints of the original CAD assembly from which the Physical
Modeling XML file was exported.

• A special Root Body occurs at the top of the main hierarchy. A Root
Body has no mass and no inertia and does not move.

Special Root Bodies can occur at the top of each subsystem if such a
body is needed to correctly represent DoF constraints in the original
CAD assembly.

• The Joints are the appropriate type to represent given combinations
of primitives. If no appropriate specific Joint exists, a Custom Joint
with the appropriate primitives is used instead. The Joints are Welds
if they carry no DoFs.

Example Create the Physical Modeling XML file for a CAD assembly called
assembly by exporting the assembly from your CAD platform. Call the
file assembly.xml.

Then enter

import_physmod('assembly.xml')

at the command line. The model generation status is indicated by a
progress bar. A model window opens, and SimMechanics generates the
block diagram in a model file called assembly.mdl. You can then save,
rename, edit, and run the model.

You can generate the same model, but with point size 14 for the block
labels and extra spacing to accommodate the longer block names, by
entering

import_physmod('assembly.xml','FontSize',14, ...

12-6

import_physmod

'UseBlockNamesForSpacing','on')

at the command line.

See Also See Chapter 7, “Modeling with Computer-Aided Design” for more details
and instructions on generating the Physical Modeling XML file for a
CAD assembly and importing it into SimMechanics to generate a model.

12-7

mech_get_states

Purpose SimMechanics states from Simulink state vector

Syntax [vector_mgr, mech_states] = mech_get_states(X, block)
[vector_mgr, mech_states] = mech_get_states(X, vectorMgr)

Synopsis [vector_mgr, mech_states] = mech_get_states(X, block) returns
a state vector manager object whose values reflect the SimMechanics
states in the Simulink state vector X for the SimMechanics machine
containing block. The mechanical states vector_mgr.X are also
returned in mech_states.

[vector_mgr, mech_states] = mech_get_states(X, vectorMgr)
extracts the mechanical states from the Simulink state vector X
and returns them as an array of states suitable for assignment into
vectorMgr.X. The state vector manager vectorMgr is not modified.

If you call any form of the command with only one output argument, it
returns vector_mgr. Thus, the three command line entries

vm = mech_stateVectorMgr(block);
[vm , mech_states] = mech_get_states(X, vm);
vm.X = mech_states;

are equivalent to

vm = mech_get_states(X, block);

Description The mech_get_states command extracts the mechanical states,
with specific values, from the overall Simulink state vector of your
SimMechanics model.

The returned vector manager is an instance of the MECH.StateVectorMgr
class, such as returned by the mech_stateVectorMgr command.

Input
Arguments

mech_get_states accepts two possible combinations of two input
arguments. In both cases, the state vector X must be compatible with
your Simulink model.

12-8

mech_get_states

The first combination is mech_get_states(X, block), where X is the
Simulink state vector for your model, and block is a string or block
handle specifying the absolute path of a block in the machine you want
to query.

The second combination is mech_get_states(X, vectorMgr), where
X is the Simulink state vector for your model, and vectorMgr is a
mechanical state vector manager object of the MECH.StateVectorMgr
class.

Outputs mech_get_states yields two outputs in the form [vector_mgr,
mech_states]. You can also call mech_get_states with one output.

vector_mgr is an instance of the MECH.StateVectorMgr object class
whose values reflect the mechanical state of the model.

mech_states is a vector of the mechanical state values. In the first form
of the command, it is identical to vector_mgr.X.

Example First simulate a Stewart platform model for 10 seconds:

[t,x,y] = sim('mech_stewart_trajectory',10);

Then populate the state vector manager with this model’s final state:

stewartStateVectorMgr = mech_get_states(x(end,:), ...
'mech_stewart_trajectory/Plant/Machine Environment')

See Also mech_runtime_states, mech_set_states, mech_transfer_states

To create a state vector manager object, see the command reference
for mech_stateVectorMgr.

In Simulink, see sim and states.

12-9

mech_runtime_states

Purpose SimMechanics states from running simulation

Syntax X = mech_runtime_states(vectorMgr)
[X, RTO] = mech_runtime_states(vectorMgr)
[X, RTO] = mech_runtime_states(vectorMgr, RTO)

Synopsis X = mech_runtime_states(vectorMgr) returns the vector of
instantaneous SimMechanics states in the machine associated with the
state vector manager vectorMgr in an executing model. The contents of
vectorMgr are not altered.

[X, RTO] = mech_runtime_states(vectorMgr) also returns the
Simulink runtime object (RTO) that contains the SimMechanics states.
You can use this form to speed up future calls to this command.

[X, RTO] = mech_runtime_states(vectorMgr, RTO) uses the
Simulink runtime object RTO assumed to correspond to the machine
associated with vectorMgr. This form of the command is faster.

Description The mech_runtime_states command extracts the instantaneous values
of the mechanical state of your model while it is running.

The returned value X has a format that can be assigned to vectorMgr.X,
which you can then use to interpret the states.

Input
Arguments

mech_runtime_states accepts one or two arguments.

The required argument, vectorMgr, is a mechanical state vector
manager as returned by the mech_stateVectorMgr command.

The optional second argument, RTO, is a Simulink runtime object that
corresponds to the machine referenced by vectorMgr.

Outputs mech_runtime_states yields two outputs in the form [X, RTO]. You
can also call mech_get_states with one output.

X is the vector of mechanical state values at the instant you query the
running model.

RTO is a Simulink runtime object.

12-10

mech_runtime_states

Example The following script displays and updates the state of the first Joint
in the Stewart platform model, mech_stewart_trajectory. The results
appear in the command window. Enter Ctrl+C at the command line to
halt the simulation.

modelName = 'mech_stewart_trajectory';
open(modelName);
groundBlock = find_system(modelName, 'Name', 'Ground1');

vm = mech_stateVectorMgr(groundBlock{1});
set_param(modelName, 'SimulationCommand', 'Start')
[vm.X, rto] = mech_runtime_states(vm)

try
while (true)

vm.X = mech_runtime_states(vm, rto);
clc;
vm.BlockStates(1) % display
pause(0.5);

end
catch

set_param(modelName, 'SimulationCommand', 'Stop')
rethrow(lasterr);

end

set_param(modelName, 'SimulationCommand', 'Stop')

See Also mech_get_states, mech_set_states, mech_stateVectorMgr,
mech_transfer_states

In Simulink, learn about runtime objects and how to access block data
during simulation.

In Simulink, see sim and states.

12-11

mech_set_states

Purpose Populate SimMechanics states in Simulink state vector

Syntax X = mech_set_states(vector_mgr)
X = mech_set_states(vector_mgr, X)
X = mech_set_states(vector_mgr, X, mech_states)

Synopsis X = mech_set_states(vector_mgr) returns the Simulink state
vector X for the model associated with vector_mgr. The state vector
entries corresponding to the SimMechanics states are filled with the
values specified in vector_mgr. Entries in X that do not correspond
to SimMechanics states are set to their initial values, as reported by
Simulink.

X = mech_set_states(vector_mgr, X) overwrites the entries that
correspond to SimMechanics states in the input state vector X with the
values specified in vector_mgr. Entries of X that do not correspond
to SimMechanics states are left unchanged. Specify [] in place of X
to obtain the initial values for the nonmechanical states, as reported
by Simulink.

X = mech_set_states(vector_mgr, X, mech_states) overwrites the
entries that correspond to SimMechanics states in the input state vector
X with the values specified in mech_states (for example, as reported by
vector_mgr.X). Entries of X that do not correspond to SimMechanics
states are left unchanged.

Description The mech_set_states command inserts mechanical state values into a
Simulink state vector.

Input
Arguments

mech_set_states accepts one, two, or three arguments.

The required argument, vector_mgr, is an instance of the object class
MECH.StateVectorMgr corresponding to the machine.

The optional second argument, X, is a vector of Simulink state values.

The optional third argument, mech_states, requires the second optional
argument, X, as well. It is a vector of the mechanical state values and is
assigned to vector_mgr.X.

12-12

mech_set_states

Outputs mech_set_states yields one output, X.

X is the Simulink state vector for the model you are querying, with the
mechanical state values set to the values specified by the command.

Example Here you set state values in a simple pendulum model.

open mech_spen
vm = mech_stateVectorMgr('mech_spen/Machine Environment');
vm.x = [pi/4 0];
simulinkState = mech_set_states(vm);
IS = simset('InitialState',simulinkState);
[t, xIS] = sim('mech_spen', 5, IS);

Compare the initial condition xIS(1,:) with that obtained without
setting the initial state in x0(1,:) below:

[t, x0] = sim('mech_spen', 5);

See Also mech_get_states, mech_runtime_states, mech_stateVectorMgr,
mech_transfer_states

In Simulink, see sim and states.

12-13

mech_stateVectorMgr

Purpose Create machine state vector manager object

Syntax mech_stateVectorMgr

Synopsis mech_stateVectorMgr returns a data structure of
MECH.StateVectorMgr class. It does not return actual state
values. You can subsequently assign values to the states in this
object, but these values do not propagate to your model. That requires
changing the mechanical part of the model’s Simulink state vector.

You must call mech_stateVectorMgr with one argument, the pathname
or handle of any block in the machine whose state you want:

MachineState = mech_stateVectorMgr('pathname')
MachineState = mech_stateVectorMgr('handle')

Obtain the pathname and handle with the Simulink gcb and gcbh
commands.

You can also call mech_stateVectorMgr with an indirect call to the
block pathname or handle. Select one of the SimMechanics blocks in
the machine and enter one of these commands:

MachineState = mech_stateVectorMgr(gcb)
MachineState = mech_stateVectorMgr(gcbh)

Note The state manager object includes only the states of a machine
made of SimMechanics blocks. Simulink associates the machine to one
of the machine’s Ground blocks.

Description Excluding any motion-actuated joint primitives, the total number of
mechanical state components is

N = 2*(# of prismatics + # of revolutes) + 8*(# of sphericals)
+ (# of Point-Curve Constraints)

12-14

mech_stateVectorMgr

The machine state consists of all the translational and angular positions
and velocities of all degrees of freedom (DoFs) in the machine:

• Prismatic and revolute joint primitives each have two state
components, a position and a velocity.

• Spherical joint primitives each have eight state components, a
quaternion and a quaternion derivative.

• A joint primitive actuated by a Joint Initial Condition Actuator
(JICA) is counted like other joint primitives. Because the JICA
externally specifies such a primitive’s initial position and velocity, the
primitive has an active FixedAtT_0 flag.

• Point-Curve Constraints each have one predictor state component,
the arc parameter velocity of the point along the curve.

Joint Primitives Not Counted As Degrees of Freedom

• If the joint primitive is motion actuated with a Joint Actuator block,
that joint primitive is not counted in the machine state components.

• The weld primitive contributes no state components.

Input
Arguments

There is one input argument, a SimMechanics block’s full pathname
or handle, or an indirect call to the pathname or handle using the
commands gcb or gcbh. The full path name starts with the model name
and continues through any subsystem hierarchy:

pathname = modelname/subsystem1/etc.../blockname

Obtain the pathname or handle of any block by selecting that block in a
window and entering gcb or gcbh at the command line.

Combine these steps into one with an indirect pathname or handle call.
Select a SimMechanics block in the model window and instead enter
either command:

mech_stateVectorMgr(gcb)
mech_stateVectorMgr(gcbh)

12-15

mech_stateVectorMgr

Output
Arguments

The output of mech_stateVectorMgr is an object of the
MECH.StateVectorMgr class.

A machine is a connected set of SimMechanics blocks. Each machine
must have at least one Ground block. Simulink chooses one of the
Ground blocks as the machine root. This root serves as a proxy for the
whole machine.

The returned object has four properties. Three are fixed by the machine
structure and naming. You can change the values in the fourth, X, but
these values do not propagate to the model. Consult “See Also” on
page 12-20 following for more about changing a model’s mechanical
state vector values.

Property Variable Type Content

MachineState.MachineName string 'modelname/subsystem1
/etc.../rootgroundblock'

MachineState.X 1-by-N real array [0 0 ... 0]

MachineState.BlockStates array of N block state
managers

Joint primitive and
Point-Curve Constraint
states

MachineState.StateNames cell array of N strings Names of joint primitives
and Point-Curve Constraints

Entering the mech_stateVectorMgr command or querying the entire
object returns a summary of the object by property.

• The MachineState.X property indicates the number of state
components.

• The block state managers of BlockStates are structures, arranged in
the array by class: MECH.RPJointStateMgr, MECH.SJointStateMgr,
and MECH.PointCurveStateMgr. The components of each manager
contain:

12-16

mech_stateVectorMgr

- The joint block and prismatic, revolute, and spherical primitive
names

- The position and velocity values and units

- The FixedAtT_0 flag indicating if the primitive is actuated with
initial conditions

Using
the State
Manager
Object

Once you create a state vector manager object, you can query the
properties individually by entering the full property name:

MachineState.MachineName
MachineState.X

The state vector manager object is a singleton. If you create the object
in A, then reassigning B = A makes A and B point to each other, not
independent copies. Changing B automatically changes A and vice versa.

Examples Some examples illustrate the use of the state vector manager.

Mechanical State Vector with One Primitive

Open the demo model mech_spen. Select a SimMechanics block and
enter

machinestate = mech_stateVectorMgr(gcb)

at the command line. The command returns

machinestate =
MECH.StateVectorMgr
MachineName: 'mech_spen/Ground'

X: [0 0]
BlockStates: [1x1 MECH.RPJointStateMgr]
StateNames: {2x1 cell}

The first line in the object is the class and the last four are the
properties. The model mech_spen contains one Joint block (a Revolute),
with two states (angle and angular velocity).

12-17

mech_stateVectorMgr

Query individual properties. Entering machinestate.machinename
returns

mech_spen/Ground

referring to the one Ground block in the model. Entering
machinestate.X returns a two-component state vector (N = 2, position
and velocity).

0 0

Entering machinestate.blockstates returns

MECH.RPJointStateMgr
BlockName: 'Revolute'
Primitive: 'R1'
Position: 0

PositionUnits: 'rad'
Velocity: 0

VelocityUnits: 'rad/s'
FixedAtT_0: 'off'

There are one Joint (a Revolute) and no Point-Curve Constraints,
so there is only one state manager of class MECH.RPJointStateMgr.
This property gives detailed Joint information: block name, primitive
name, position and velocity values and units, and the absence of initial
condition actuators.

Entering machinestate.statenames returns the names of the Joint
block, the joint primitive, and the states.

'Revolute:R1:Position'
'Revolute:R1:Velocity'

Mechanical State Vector with Multiple Primitives

Construct an unnamed model with Ground and Body blocks connected
by a Telescoping Joint. Then select one of the blocks and enter
machinestate = mech_stateVectorMgr(gcb) at the command line.
Simulink returns

12-18

mech_stateVectorMgr

machinestate =
MECH.StateVectorMgr
MachineName: 'untitled/Ground'

X: [0 0 0 0 0 0 0 0 0 0]
BlockStates: [2x1 MECH.BlockStateMgr]
StateNames: {10x1 cell}

The unnamed model is associated with its Ground block and has a
spherical and a prismatic primitive, hence 10 components in the state
vector. To see those primitive names, enter machinestate.statenames
to obtain

'Telescoping:S:Quaternion:1'
'Telescoping:S:Quaternion:2'
'Telescoping:S:Quaternion:3'
'Telescoping:S:Quaternion:4'
'Telescoping:P1:Position'
'Telescoping:S:Quaternion_dot:1'
'Telescoping:S:Quaternion_dot:2'
'Telescoping:S:Quaternion_dot:3'
'Telescoping:S:Quaternion_dot:4'
'Telescoping:P1:Velocity'

The quaternion and the prismatic position make the first five
components, while the quaternion derivative and prismatic velocity
make the last five.

12-19

mech_stateVectorMgr

See Also To change actual mechanical state values, consult these commands:
mech_get_states, mech_runtime_states, mech_set_states,
mech_transfer_states

Point-Curve Constraint, Prismatic, Revolute, Spherical

See Chapter 3, “Representing Motion”.

See “Counting Degrees of Freedom” on page 4-77.

See “Trimming Mechanical Models” on page 8-18 and “Linearizing
Mechanical Models” on page 8-32.

In Simulink, see gcb, gcbh, gcs.

12-20

mech_transfer_states

Purpose Map states from one machine’s state vector manager to another

Syntax dststates = mech_transfer_states(srcMgr, dstMgr,
transferstruct)

dststates = mech_transfer_states(srcMgr, dstMgr,
transferstruct, srcstates)

dststates = mech_transfer_states(srcMgr, dstMgr,
transferstruct, srcstates, dststates)

Synopsis dststates = mech_transfer_states(srcMgr, dstMgr,
transferstruct) copies selected state entries from the source
state vector manager srcMgr to the state vector dststates, which
can be assigned to dstMgr.X, where dstMgr is the state vector
manager for the destination machine. The states to be copied are
specified in transferstruct. Any destination states not specified in
transferstruct retain their values as specified initially in dstMgr.

dststates = mech_transfer_states(srcMgr, dstMgr,
transferstruct, srcstates) performs the same transfer, but takes
the "source" states in srcstates rather than the values in srcMgr.X.

dststates = mech_transfer_states(srcMgr, dstMgr,
transferstruct, srcstates, dststates) performs the same
transfer, but also takes the "destination" states in dststates rather
than the values in dstMgr.X for those destination states that are not
the target of an assignment.

Either or both of the dst and src fields in transferstruct can also be
indices for their respective vector manager’s X vectors. In the case that
they both are, this command is equivalent to:

dststates(transferstruct.dst) = srcstates(transferstruct.src)

Description The mech_transfer_states command copies specified SimMechanics
states between state vector managers.

12-21

mech_transfer_states

Input
Arguments

mech_transfer_states accepts three, four, or five arguments.

The required first argument, srcMgr, is a state vector manager for the
source system. It is an object of the MECH.StateVectorMgr class as
returned by the mech_stateVectorMgr command.

The required second argument, dstMgr, is a state vector manager for
the destination system. It is an object of the MECH.StateVectorMgr
class as returned by the mech_stateVectorMgr command.

The required third argument, transferstruct, is a structured array
whose src and dst fields contain either the indices or the names of
the source and destination states as known to their respective state
managers.

The optional fourth argument, srcstates, is a source mechanical state
vector.

The optional fifth argument, dststates, requires the optional fourth
argument and is a destination mechanical state vector.

Outputs mech_transfer_states yields one output, dststates.

dststates is the destination mechanical state vector.

Example These commands copy the first state in srcMgr to the third state in
dstMgr:

transferstruct(1).src=srcMgr.StateNames{1};
transferstruct(1).dst=dstMgr.StateNames{3};
dstMgr.X = mech_transfer_states(srcMgr, dstMgr, transferstruct);

See Also mech_get_states, mech_runtime_states, mech_set_states,
mech_stateVectorMgr

In Simulink, see sim and states.

12-22

A

Technical Conventions

A Technical Conventions

Mechanical Conventions and Abbreviations

Right-Hand Rule Is Assumed
For rotational motion and vector cross products a X b, the right-hand (RH)
rule is always assumed.

Vector Multiplication
Scalar-vector products and matrix-vector multiplication are denoted by a·b
and M·v, respectively.

Common Abbreviations
These are the abbreviations of mechanical terms most commonly used in
this guide.

Abbreviation Meaning

CG Center of gravity

CS Coordinate system

DoF Degree of freedom

RF Reference frame

Glossary Terms
Special mechanical or SimMechanics terms are frequently hyperlinked online
to entries in the Glossary.

A-2

Mechanical Units

Mechanical Units
SimMechanics accepts any mixture of meters-kilograms-seconds or MKS
(SI), cgs, and English units.

Quantity MKS (SI) cgs English

Length meter (m) centimeter (cm) inch (in),
foot (ft)

Time second (s) second (s) second (s)

Mass kilogram (kg) gram (g) slug (slug)

Velocity meter/second (m/s) centimeter/second
(cm/s)

inch/second (in/sec),
foot/second (ft/sec)

Acceleration
(Gravity)

meter/second2

(m/s2)
centimeter/second2

(cm/s2)
inch/second2 (in/sec2),
foot/second2 (ft/sec2)

Force newton (N) dyne (dyn) pound (lb)

Angle radian (rad),
degree (deg)

radian (rad),
degree (deg)

radian (rad),
degree (deg)

Inertia kilogram-meter2 (kg-m2) gram-centimeter2

(g-cm2)
slug-foot2 (slug-ft2)

Angular
velocity

radian/second (rad/s),
degree/second (deg/s)

radian/second (rad/s),
degree/second (deg/s)

radian/second (rad/sec),
degree/second (deg/sec)

Angular
acceleration

radian/second2 (rad/s2),
degree/second2 (deg/s2)

radian/second2 (rad/s2),
degree/second2 (deg/s2)

radian/second2

(rad/sec2),
degree/second2 (deg/sec2)

Torque newton-meter (N-m) dyne-centimeter
(dyn-cm)

pound-foot (lb-ft)

A-3

A Technical Conventions

A-4

B

Bibliography

B Bibliography

[1] Gill, P. E., W. Murray, and M. Wright, Practical Optimization, San Diego,
Academic Press, 1981.

[2] Goldstein, H., Classical Mechanics, Second Edition, Reading,
Massachusetts, Addison-Wesley, 1980.

[3] Goodman, L. E., and W. H. Warner, Statics, Mineola, New York, Dover
Publications, 2001 (original edition, 1964).

[4] Goodman, L. E., and W. H. Warner, Dynamics, Mineola, New York, Dover
Publications, 2001 (original edition, 1963).

[5] Haug, E. J., Computer-Aided Kinematics and Dynamics of Mechanical
Systems, Volume 1: Basic Methods, Boston, Allyn & Bacon, 1989.

[6] José, J. V., and E. J. Saletan, Classical Dynamics: A Contemporary
Approach, Cambridge, Cambridge University Press, 1998.

[7] JPL DARTS Web page on spatial operator algebra:
http://dshell.jpl.nasa.gov/References/index.html.

[8] Marrin, C., and B. Campbell, Teach Yourself VRML 2 in 21 Days,
Indianapolis, Indiana, Sams.net, 1997.

[9] Marsden, J. E., and T. S. Ratiu, Introduction to Mechanics and Symmetry,
Second Edition, New York, Springer-Verlag, 1999.

[10] Meriam, J. L., Engineering Mechanics, Fourth Edition, two volumes,
New York, John Wiley and Sons, 1997.

[11] Murray, R. M., Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation, Boca Raton, Florida, CRC Press, 1994.

[12] von Schwerin, R., MultiBody System SIMulation: Numerical Methods,
Algorithms, and Software, Berlin, Springer-Verlag, 1999.

B-2

http://dshell.jpl.nasa.gov/References/index.html

Glossary

Glossary

actuator
An actuator converts a Simulink signal into SimMechanics force, torque,
or motion signals.

• You can configure a body actuator to apply forces/torques to a
body either as an explicit function of time or through feedback
forces/torques.

• You can configure a joint actuator to apply forces/torques between the
bodies connected on either side of the joint.

• You can configure a driver actuator to apply relative motion between
the bodies connected on either side of the driver.

SimMechanics also has two specialized actuators, one for setting joint
initial conditions and one for applying stiction to a joint.

Actuator What the Actuator Does

Body Actuator Applies forces to a body

Driver Actuator Applies motion to a time-dependent
constraint

Joint Actuator Applies forces or motions to a joint

Joint Initial Condition
Actuator

Sets a joint’s initial conditions

Joint Stiction Actuator Applies static and kinetic friction to joint
motion

In SimMechanics, an Actuator block has an open round SimMechanics
connector port for connecting with a Body, Joint, or Driver block and
an angle bracket > Simulink inport for connecting with normal Simulink
blocks, such as Source blocks for generating force or torque signals.

See also body, connector port, driver, initial condition actuator,
joint, primitive joint, sensor, and stiction actuator.

Glossary-1

Glossary

adjoining CS
The adjoining CS of a Body CS is the CS on the neighboring body or
ground directly connected to the original Body CS by a Joint, Constraint,
or Driver.

See also body, Body CS, coordinate system (CS), grounded CS,
and World.

assembled configuration
A machine is in its assembled configuration once it passes through its
initial configuration and its disassembled joints are then assembled.
The assembly of joints can change body and joint configurations.

See also home configuration and initial configuration.

assembled joint
Restricts the Body coordinate systems (CSs) on the two bodies at either
end of the joint.

• For an assembled prismatic joint, the two Body CS origins must lie
along the prismatic axis. The two Bodies translate relatively along
the same axis.

For an assembled joint with multiple prismatic primitives, the
two Body CS origins must lie in the plane or space defined by the
directions of the prismatic axes.

• For an assembled revolute joint, the two Body CS origins must be
collocated. The two Bodies rotate relatively about the same axis.

For an assembled joint with multiple revolute primitives, the two
Body CS origins must be collocated.

• For an assembled spherical joint, the two Body CS origins must be
collocated at the spherical primitive’s pivot point. The two Bodies
pivot relatively about this common origin.

You specify an assembly tolerance for assembled joints, the maximum
dislocation distance allowed between all pairs of assembled Body CS
origins and the maximum angle of misalignment between all pairs of
assembled Body motion axes. If the distance dislocations and/or axis
misalignments in an assembled joint grow larger than the assembly
tolerance, the simulation stops with an error.

Glossary-2

Glossary

See also assembly tolerance, Body CS, collocation, disassembled
joint, joint, and primitive joint.

assembly
Representation of a machine in computer-aided design. An assembly
includes parts (bodies with full geometric, mass, and inertia tensor
information), as well as constraints (sometimes called mates) restricting
the degrees of freedom of the parts.

Every assembly has a fundamental root. Assemblies can also have one
or more subassemblies branching off the main assembly at a single point.

Assembly specifications typically also include design tolerances and how
subassemblies move and how they are connected to the main assembly.

See also body, computer-aided design (CAD), constraint, degree
of freedom (DoF), fundamental root, inertia tensor, mass, part,
and subassembly.

assembly tolerance
Determines how closely an assembled joint must be collocated and
aligned. An assembled joint is connected on either side to Body
coordinate systems (CSs) on two Bodies and restricts the relative
configurations and motions of those Body CSs.

The assembly tolerances set the maximum dislocation of Body CS
origins and maximum misalignment of motion axes allowed in
assembled joints during the simulation.

• For assembled prismatic primitives, each pair of Body CS origins
must lie in the subspace defined by the prismatic axes. Each pair of
Bodies translates along these common axes.

• For assembled revolute primitives, each pair of Body CS origins must
be collocated and their respective rotational axes aligned. Each pair
of Bodies rotates about these common axes.

• For an assembled spherical primitive, the pair of Body CS origins
must be collocated. The two Bodies pivot about this common origin.

Glossary-3

Glossary

SimMechanics attempts to assemble all joints in your machine at the
start of simulation, including initially disassembled joints. If it cannot,
the simulation stops with an error.

If the two Body CSs separate or the joint axes misalign in a way that
makes their connecting assembled joint primitives no longer respect the
assembly tolerances, the simulation stops with an error.

See also assembled joint, Body CS, collocation, disassembled
joint, and joint.

axis-angle rotation
A representation of a three-dimensional spherical rotation as a rotation
axis vector n = (nx,ny,nz) of unit length (n·n = nx

2 + ny
2 + nz

2 = 1) and a
rotation angle θ. Define the rotation axis by the vector n; rotate about
that axis by θ using the right-hand rule. The n axis is sometimes called
the eigenaxis.

The rotation axis direction is equivalent to specifying two independent
angles; θ is the third independent angle making up the rotation.

In VRML, you represent body rotations by a vector signal [nx ny nz θ].

See also degree of freedom (DoF), Euler angles, primitive joint,
quaternion, right-hand rule, rotation matrix, and VRML.

base (base body)
The point from which the joint is directed. The joint directionality runs
from base to follower body.

Joint directionality sets the direction and the positive sign of all joint
motion and force-torque data.

See also body, directionality, follower (follower body), and
right-hand rule.

body
The basic element of a mechanical system or machine. It is characterized
by its

• Mass properties (mass and inertia tensor)

• Position and orientation in space

Glossary-4

Glossary

• Attached Body coordinate systems

Bodies are connected to one another by joints, constraints, or drivers.
Bodies carry no degrees of freedom.

You can attach to a Body block any number of Body coordinate systems
(CSs). All SimMechanics Bodies automatically maintain a minimum of
one Body CS at the body’s center of gravity (CG). The Body block has
special axis triad CS ports , instead of the open, round connector ports

, to indicate the attached Body CSs.

See also actuator, adjoining CS, Body CS, center of gravity (CG),
convex hull, coordinate system (CS), degree of freedom (DoF),
equivalent ellipsoid, inertia tensor, joint, local CS, mass, and
sensor.

Body CS
A local coordinate system (CS) attached to a body, carried along with
that body’s motion. In general, bodies accelerate as they move, and
therefore Body CSs define noninertial reference frames.

You can attach any number of Body CSs to a Body block, and you can
choose where to place the Body CS origins and how to orient the Body
CS axes. The Body block has special axis triad CS ports instead of the
open, round connector ports, to give you access to these Body CSs for
connecting Joint, Sensor, and Actuator blocks.

Every Body block has an automatic, minimum Body CS at its center of
gravity (CG). By default, it also has two other Body CSs for connection
to adjacent Joints. The origin and axis orientation of each Body CSs
once set by the user during Body configuration, are interpreted as fixed
rigidly in that body during the simulation.

See also body, center of gravity (CG), convex hull, coordinate
system (CS), ground, grounded CS, local CS, reference frame
(RF), and World.

CAD
See computer-aided design (CAD).

Glossary-5

Glossary

center of gravity (CG)
The center of gravity or center of mass of an extended body is the
point in space about which the entire body balances in a uniform
gravitational field. For translational dynamics, the body’s entire mass
can be considered as if concentrated at this point.

Every Body block has an automatic, minimum Body coordinate system
(CS) with its origin at the CG — the CG CS. This origin point and the
Body CS coordinate axes remain fixed rigidly in the body during the
simulation.

See also body, Body CS, degree of freedom (DoF), inertia tensor,
kinematics, and primitive joint.

CG
See center of gravity (CG).

closed loop system
You can disconnect a closed loop system into two separate systems only
by cutting more than one joint. The number of closed loops is equal to
the minimum number, minus one, of cuttings needed to disconnect the
system into two systems.

See also open system and topology.

collocation
Two points in space are collocated if they are coincident, within
assembly tolerances.

See also assembled joint, assembly tolerance, and disassembled
joint.

composite joint
A joint compounded from more than one joint primitive and thus
representing more than one degree of freedom. The joint primitives
constituting a composite joint are the primitives of that joint.

A spherical primitive represents three rotational degrees of freedom,
but is treated as a primitive.

See also constrained joint, degree of freedom (DoF), joint, and
primitive joint.

Glossary-6

Glossary

computer-aided design (CAD)
Computer-aided design systems or platforms provide an environment to
design machines, with full geometric information about parts (bodies)
and their spatial relationships, as well as the degrees of freedom and
mass properties (masses and inertia tensors) of the parts.

A CAD representation of a machine is an assembly.

See also assembly, body, constraint, degree of freedom (DoF),
inertia tensor, mass, and part.

connection line
You connect each SimMechanics block to another by using SimMechanics
connection lines. These lines function only with SimMechanics blocks.
They do not carry signals, unlike normal Simulink lines, and cannot be
branched. You cannot link connection lines directly to Simulink lines.

Connection lines appear red and dashed if they are not anchored at both
ends to a connector port . Once you anchor them, the lines become
black and solid.

See also actuator, connector port, and sensor.

connector port
An anchor for a connection line. Each SimMechanics block has one
or more open round SimMechanics connector ports for connecting to
other SimMechanics blocks. You must connect these round ports only
to other SimMechanics round ports. When an open connector port is
attached to a connection line, the Port changes to solid .

A Connection Port block is provided in the SimMechanics library to
create a round SimMechanics connector port for an entire subsystem on
that subsystem’s boundary.

See also actuator, connection line, and sensor.

constrained joint
A composite joint with one or more internal constraints restricting the
joint’s primitives.

Glossary-7

Glossary

An example is the Screw block, which has a prismatic and a revolute
primitive with their motions in fixed ratio. Only one of these degrees
of freedom is independent.

See also degree of freedom (DoF), joint, and primitive joint.

constraint
A restriction among degrees of freedom imposed independently of any
applied forces/torques. A constraint removes one or more independent
degrees of freedom, unless that constraint is redundant and restricts
degrees of freedom that otherwise could not move anyway. Constraints
can also create inconsistencies with the applied forces/torques that lead
to simulation errors.

• Constraints are kinematic: they must involve only coordinates and/or
velocities. Higher derivatives of coordinates (accelerations, etc.) are
determined by the Newtonian force and torque laws and cannot be
independently constrained.

• Constraints are holonomic (integrable into a form involving only
coordinates) or nonholonomic (not integrable; that is, irreducibly
involving velocities).

• Constraints specify kinematic relationships that are explicit functions
of time (rheonomic) or not (scleronomic).

In SimMechanics, scleronomic constraints are called Constraints, and
rheonomic constraints are called Drivers. SimMechanics Constraint
and Driver blocks are attached to pairs of Body blocks.

• In computer-aided design (CAD) assemblies, a constraint restricts one
or more degrees of freedom of the assembly parts. (CAD constraints
are sometimes called mates.) When a CAD assembly is converted
to a SimMechanics model, such restricted degrees of freedom are
translated into specific joints. (In SimMechanics, bodies have no
degrees of freedom.)

See also assembly, body, computer-aided design (CAD), degree of
freedom (DoF), directionality, driver, joint, machine precision
constraint, part, stabilizing constraint, and tolerancing
constraint.

Glossary-8

Glossary

convex hull
The surface of minimum area with convex (outward-bowing) curvature
that passes through all the spatial points in a set. In three dimensions,
this set must contain at least four distinct, non-coplanar points to make
a closed surface with nonzero enclosed volume.

In SimMechanics, the convex hull is an option for visualizing a body. The
set of points is all the Body coordinate system (CS) origins configured
in that Body block. The visualization of an entire machine is the set of
the convex hulls of all its bodies.

If a Body has fewer than four distinct, non-coplanar Body CSs, its
convex hull is a lower-dimensional figure:

• Three distinct Body CSs produce a triangle without volume.

• Two distinct Body CSs produce a line without area.

• One Body CS produces a point without length.

See also body, Body CS, and equivalent ellipsoid.

coordinate system (CS)
A coordinate system is defined, in a particular reference frame, by a
choice of origin and orientation of coordinate axes, assumed orthogonal
and Cartesian (rectangular). An observer attached to that CS measures
distances from that origin and directions relative to those axes.

SimMechanics has two CS types:

• World: global or absolute inertial CS at rest

• Local:

- Grounded CS

- Body CS, including the center of gravity (CG) CS

Local coordinate systems are sometimes called working frames.

See also body, Body CS, center of gravity (CG), convex hull,
grounded CS, local CS, reference frame (RF), and World.

Glossary-9

Glossary

CS
A coordinate system (CS).

degree of freedom (DoF)
A single coordinate of relative motion between two bodies. Such a
coordinate is free only if it can respond without constraint or imposed
motion to externally applied forces or torques. For translational motion,
a DoF is a linear coordinate along a single direction. For rotational
motion, a DoF is an angular coordinate about a single, fixed axis.

A prismatic joint primitive represents a single translational DoF. A
revolute joint primitive represents a single rotational DoF. A spherical
joint primitive represents three rotational DoFs in angle-axis form. A
weld joint primitive represents zero DoFs.

See also body, coordinate system (CS), dynamics, joint, and
kinematics.

directionality
The directionality of a joint, constraint, or driver is its direction of
forward motion.

The joint directionality is set by the order of the joint’s connected bodies
and the direction of the joint axis vector. One body is the base body, the
other the follower body. The joint direction runs from base to follower, up
to the sign of the joint axis vector. Reversing the base-follower order or
the joint axis vector direction reverses the forward direction of the joint.

Joint directionality sets the direction and the positive sign of all joint
motion and force-torque data.

Directionality of constraints and drivers is similar, except there is no
joint axis, only the base-follower sequence.

See also base (base body), body, follower (follower body), joint,
and right-hand rule.

disassembled joint
A disassembled joint need not respect the assembly tolerances of your
machine.

Glossary-10

Glossary

• For a disassembled prismatic primitive, the Body coordinate system
(CS) origins do not have to lie on the prismatic axis.

• For a disassembled revolute primitive, the Body CS origins do not
have to be collocated.

• For a disassembled spherical primitive, the Body CS origins do not
have to be collocated.

SimMechanics attempts to assemble all disassembled joints in your
machine at the start of simulation. If it cannot, the simulation stops
with an error.

You can use disassembled joints only in a closed loop, with no more
than one per loop.

See also assembled joint, assembly tolerance, closed loop system,
collocation, and topology.

DoF
A degree of freedom (DoF).

driver
A constraint that restricts degrees of freedom as an explicit function
of time (a rheonomic constraint) and independently of any applied
forces/torques. A driver removes one or more independent degrees
of freedom, unless that driver is inconsistent with the applied
forces/torques and forces a simulation error.

In SimMechanics, you specify the driver function of time in a dialog box
in terms of an input Simulink signal from a Driver Actuator.

SimMechanics Driver blocks are attached to pairs of Body blocks.

See also actuator, body, constraint, directionality, and degree of
freedom (DoF).

dynamics
A forward dynamic analysis of a mechanical system specifies

• The topology of how bodies are connected

• The degrees of freedom (DoFs) and constraints among DoFs

Glossary-11

Glossary

• All the forces/torques applied to the bodies

• The mass properties (masses and inertia tensors) of the bodies

• The initial condition of all DoFs:

- Initial linear coordinates and velocities

- Initial angular coordinates and velocities

The analysis then solves Newton’s laws to find the system’s motion for
all later times.

Inverse dynamics is the same, except that the system’s motion is
specified and the forces/torques necessary to produce this motion are
determined.

Dynamics is distinguished from kinematics by explicit specification of
applied forces/torques and body mass properties.

See also constraint, degree of freedom (DoF), inertia tensor,
kinematics, mass, and topology.

equivalent ellipsoid
The equivalent ellipsoid of a body is the homogeneous solid ellipsoid,
centered at the body’s center of gravity, with the same principal
moments of inertia and principal axes as the body. A homogeneous solid
ellipsoid is the simplest body with three distinct principal moments.

Every body has a unique equivalent ellipsoid, but a given homogeneous
ellipsoid corresponds to an infinite number of other, more complicated,
bodies. The rotational dynamics of a body depend only on its equivalent
ellipsoid (which determines its principal moments and principal axes),
not on its detailed shape.

In SimMechanics, the equivalent ellipsoid is an option for visualizing
a body.

See also body, convex hull, dynamics, inertia tensor, principal
axes, and principal inertial moments.

Euler angles
A representation of a three-dimensional spherical rotation as a product
of three successive independent rotations about three independent axes

Glossary-12

Glossary

by three independent (Euler) angles. Follow the Euler angle convention
by

1 Rotating about one axis (which rotates the other two).

2 Then rotating about a second axis (rotated from its original direction)
not identical to the first.

3 Lastly, rotating about another axis not identical to the second.

There are 3*2*2 = 12 possible Euler angle rotation sequences.

See also axis-angle rotation, degree of freedom (DoF), primitive
joint, quaternion, right-hand rule, and rotation matrix.

fixed part
A “fixed” part of a computer-aided design assembly or subassembly is
a part that is welded to the assembly or subassembly root. That is, a
“fixed” part cannot move relative to the root.

See also computer-aided design (CAD), root body, subassembly,
and subassembly root.

follower (follower body)
The point to which the joint is directed. The joint directionality runs
from base to follower body.

Joint directionality sets the direction and the positive sign of all joint
motion and force-torque data.

See also base (base body), body, directionality, and right-hand
rule.

fundamental root
A point in a computer-aided assembly that does not move. All
translational and rotational motion of parts in the assembly reference
this unmoving point.

See also assembly, computer-aided design (CAD), part, and root
body.

Glossary-13

Glossary

ground
A ground or ground point is a point fixed at rest in the absolute or global
inertial World reference frame.

Each ground has an associated grounded coordinate system (CS). The
grounded CS’s origin is identical to the ground point, and its coordinate
axes are always parallel to the coordinate axes of World.

See also body, coordinate system (CS), grounded CS, machine,
and World.

grounded CS
A local CS attached to a ground point. It is at rest in World, but its
origin is wherever the ground point is and thus, in general, shifted with
respect to the World CS origin. The coordinate axes of a grounded CS
are always parallel to the World CS axes.

The World coordinate axes are defined so that:

+x points right

+y points up (gravity in -y direction)

+z points out of the screen, in three dimensions

You automatically create a Grounded CS whenever you set up a Ground
block.

See also adjoining CS, body, Body CS, coordinate system (CS),
ground, local CS, and World.

home configuration
The bodies of a machine are in their home configuration when they
are positioned and oriented purely according to the positions and
orientations entered into the Body dialogs. This configuration assumes
zero body velocities.

See also assembled configuration and initial configuration.

inertia tensor
The inertia or moment of inertia tensor of an extended rigid body
describes its internal mass distribution and the body’s angular
acceleration in response to an applied torque.

Glossary-14

Glossary

Let V be the body’s volume and ρ(r) its mass density, a function of
vector position r within the body. Then the components of the inertia
tensor I are:

I dV r rij ij i j
V

= −⎡
⎣⎢

⎤
⎦⎥ ()∫ δ ρr r2

The indices i, j range over 1, 2, 3, or x, y, z. This tensor is a real,
symmetric 3-by-3 matrix or equivalent MATLAB expression.

SimMechanics always assumes the inertia tensor of a body is evaluated
in that body’s center of gravity coordinate system (CG CS). That is, the
origin is set to the body’s CG and the coordinate axes are the CG CS axes.

Because the CG CS of a Body block is fixed rigidly in the body during
simulation, the values of the inertia tensor components do not change
as the body rotates.

See also body, Body CS, equivalent ellipsoid, mass, principal axes,
and principal inertial moments.

initial condition actuator
An initial condition actuator gives you a way to move a system’s
degrees of freedom nondynamically to prepare a system for dynamical
integration, in a way consistent with all constraints.

In SimMechanics, the initial conditions are applied to a joint primitive.

See also actuator, dynamics, and kinematics.

initial configuration
A machine is in its initial configuration once all initial condition
actuators have been applied to its joints. This step can change the
positions and orientations of the machine’s bodies, as well as apply
nonzero initial velocities.

See also assembled configuration, home configuration, and initial
condition actuator.

joint
Represents one or more mechanical degrees of freedom between two
bodies. Joint blocks connect two Body blocks in a SimMechanics

Glossary-15

Glossary

schematic. Joints have no mass properties such as a mass or an inertia
tensor.

A joint primitive represents one translational or rotational degree
of freedom or one spherical (three rotational degrees of freedom in
angle-axis form). Prismatic and revolute primitives have motion axis
vectors. A weld primitive has no degrees of freedom.

A primitive joint contains one joint primitive. A composite joint contains
more than one joint primitive.

Joints have a directionality set by their base-to-follower Body order
and the direction of the joint primitive axis. The sign of all motion and
force-torque data is determined by this directionality.

See also actuator, assembled joint, base (base body), body,
composite joint, constrained joint, constraint, degree of freedom
(DoF), directionality, disassembled joint, follower (follower
body), ground, inertia tensor, massless connector, primitive joint,
and sensor.

kinematics
A kinematic analysis of a mechanical system specifies topology, degrees
of freedom (DoFs), motions, and constraints, without specification of
applied forces/torques or the mass properties of the bodies.

The machine state at some time is the set of all

• Instantaneous positions and orientations

• Instantaneous velocities

of all bodies in the system, for both linear (translational) and angular
(rotational) DoFs of the bodies.

Specification of applied forces/torques and solution of the system’s
motion as a function of time are given by the system’s dynamics.

See also constraint, degree of freedom (DoF), dynamics, and
topology.

local CS
A local coordinate system (CS) is attached to either a Ground or a Body:

Glossary-16

Glossary

• Grounded CS

• Body CS

You define Body CSs when you configure the properties of a Body. A
Grounded CS is automatically defined when you represent a ground
point by a Ground block.

A grounded CS is always at rest in the World reference frame. The
origin of this Grounded CS is the same point as the ground point and
thus, in general, not the same as the World CS origin.

A Body CS is fixed rigidly in the body and carried along with that body’s
motion. To indicate an attached coordinate system, a Body block has an
axis triad CS port in place of the open, round connector port .

See also body, Body CS, coordinate system (CS), grounded CS,
reference frame (RF), and World.

machine
In a SimMechanics model, a machine is a complete, connected block
diagram representing one mechanical system. It is topologically isolated
from any other machine in your model and has at least one ground.

A SimMechanics model has one or more machines.

See also ground and topology.

machine precision constraint
A machine precision constraint is a constraint numerically implemented
on the constrained degrees of freedom to the precision of your computer
processor’s arithmetic. It is the most robust, computationally intensive,
and slowest-simulating constraint.

The precision to which the constraint is maintained depends on scale or
the physical system of units.

See also constraint, stabilizing constraint, and tolerancing
constraint.

mass
The proportionality between a force on a body and the resulting
translational acceleration of that body.

Glossary-17

Glossary

Let V be the body’s volume and ρ(r) its mass density, a function of
position r within the body. Then the mass m is:

m dV
V

= ()∫ ρ r

The mass is a real, positive scalar or equivalent MATLAB expression.

A body’s mass is insensitive to choice of reference frame, coordinate
system origin, or coordinate axes orientation.

See also body and inertia tensor.

massless connector
A massless connector is equivalent to two joints whose respective
primitive axes are spatially separated by a fixed distance. You can
specify the gap distance and the axis of separation. The space between
the degrees of freedom is filled by a rigid connector of zero mass.

You cannot actuate or sense a massless connector.

See also disassembled joint and joint.

open system
You can disconnect an open system into two separate systems by cutting
no more than one joint.

Such systems can be divided into two types:

• An open chain is a series of bodies connected by joints and
topologically equivalent to a line.

• An open tree is a series of bodies connected by joints in which at least
one body has more than two joints connected to it. Bodies with more
than two connected joints define branch points in the tree. A tree can
be disconnected into multiple chains by cutting the branch points.

The end body of a chain is a body with only one connected joint.

See also closed loop system and topology.

Glossary-18

Glossary

part
A part represents a body in a computer-aided design (CAD) assembly. In
CAD representations, a part typically includes full geometric, as well as
mass and inertia tensor, information about a body.

Body degrees of freedom are restricted in CAD by constraints
(sometimes called mates).

After translation into a SimMechanics model, parts are represented by
bodies.

See also assembly, body, computer-aided design (CAD), constraint,
degree of freedom (DoF), inertia tensor, and mass.

physical tree
You obtain the physical tree representation of a machine topology from
the full machine topology by removing actuators and sensors and
cutting each closed loop once. The physical tree retains bodies, joints,
constraints, and drivers.

See also closed loop system, open system, spanning tree, and
topology.

primitive joint
A primitive joint expresses one degree of freedom (DoF) or coordinate of
motion, if this DoF is a translation along one direction (prismatic joint)
or a rotation about one fixed axis (revolute joint).

In SimMechanics, a spherical joint (three DoFs: two rotations to
specify directional axis, one rotation about that axis) is also treated
as a primitive joint.

These three types of primitive joints are the joint primitives from which
composite joints are built.

A weld primitive has no degrees of freedom.

See also composite joint and joint.

principal axes
The inertia tensor of a body is real and symmetric and thus can
be diagonalized, with three real eigenvalues and three orthogonal
eigenvectors. The principal axes of a body are these eigenvectors.

Glossary-19

Glossary

See also equivalent ellipsoid, inertia tensor, and principal inertial
moments.

principal inertial moments
The inertia tensor of a body is real, symmetric, and diagonalizable, with
three real eigenvalues and three orthogonal eigenvectors. The principal
inertial moments or principal moments of inertia of a body are these
eigenvalues, the diagonal values when the tensor is diagonalized.

The principal moments of a real body satisfy the triangle inequalities:
the sum of any two moments is greater than or equal to the third
moment.

If two of the three principal moments are equal, the body has some
symmetry and is dynamically equivalent to a symmetric top. If all three
principal moments are equal, the body is dynamically equivalent to a
sphere.

See also equivalent ellipsoid, inertia tensor, and principal axes.

quaternion
A quaternion represents a three-dimensional spherical rotation as a
four-component row vector of unit length:

q n n n qx y z= () () () ()⎡⎣ ⎤⎦ = [, , sin sin , sin , cosθ θ θ θ2 2 2 2 qv s]]
with q*q = 1. The vector n = (nx,ny,nz) is a three-component vector of
unit length: n·n = 1. The unit vector n specifies the axis of rotation. The
rotation angle about that axis is θ and follows the right-hand rule.

The axis-angle representation of the rotation is just [n θ].

See also axis-angle rotation, degree of freedom (DoF), Euler
angles, primitive joint, right-hand rule, and rotation matrix.

reference frame (RF)
The state of motion of an observer.

An inertial RF is a member of a set of all RFs moving uniformly with
respect to one another, without relative acceleration. This set defines
inertial space.

Glossary-20

Glossary

An RF is necessary but not sufficient to define a coordinate system (CS).
A CS requires an origin point and a oriented set of three orthogonal axes.

See also coordinate system (CS), local CS, and World.

RF
A reference frame (RF).

right-hand rule
The right-hand rule is the standard convention for determining the sign
of a rotation: point your right thumb into the positive rotation axis and
curl your fingers into the forward rotational direction.

See also degree of freedom (DoF), directionality, and joint.

root body
After a computer-aided design (CAD) assembly is translated into a
SimMechanics model, a block sequence Ground — Root Weld — Root
Body or Root Body — Root Weld — Fixed Body represents the CAD
assembly’s fundamental or subassembly root, respectively.

In CAD assemblies, the fundamental or subassembly root represents
a fixed point relative to which all part motion or subassembly part
motion is measured.

See also assembly, body, computer-aided design (CAD), fixed part,
fundamental root, ground, subassembly, and subassembly root.

rotation matrix
A representation of a three-dimensional spherical rotation as a 3-by-3
real, orthogonal matrix R: RTR = RRT = I, where I is the 3-by-3 identity
and RT is the transpose of R.

R
R R R
R R R
R R R

R R R
R R R=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
11 12 13

21 22 23

31 32 33

xx xy xz

yx yy yz

RR R Rzx zy zz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

In general, R requires three independent angles to specify the rotation
fully. There are many ways to represent the three independent angles.
Here are two:

Glossary-21

Glossary

• You can form three independent rotation matrices R1, R2, R3, each
representing a single independent rotation. Then compose the full
rotation matrix R with respect to fixed coordinate axes (like World) as
a product of these three: R = R3*R2*R1. The three angles are Euler
angles.

• You can represent R in terms of an axis-angle rotation n = (nx,ny,nz)
and θ with n·n = 1. The three independent angles are θ and the two
needed to orient n. Form the antisymmetric matrix:

Ĵ
n n

n n
n n

z y

z x

y x

=
−

−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0
0

0

Then Rodrigues’ formula simplifies R:

R J I J J= = + + −exp() sin (cos)θ θ θ 2 1

See also axis-angle rotation, degree of freedom (DoF), Euler
angles, primitive joint, quaternion, and right-hand rule.

sensor
Measures the motion of, or forces/torques acting on, a body or joint. A
sensor can also measure the reaction forces in a constraint or driver
constraining a pair of bodies.

In SimMechanics, a Sensor block has an open round SimMechanics
connector port for connecting with a Body or Joint block and an angle
bracket > Simulink outport for connecting with normal Simulink blocks,
such as a Sinks block like Scope.

See also actuator, body, connector port, constraint, driver, joint,
and primitive joint.

spanning tree
You obtain the spanning tree representation of a machine topology from
the full machine topology by removing everything except bodies and
joints and cutting each closed loop once.

Glossary-22

Glossary

See also closed loop system, open system, physical tree, and
topology.

stabilizing constraint
Numerically implements a constraint by modifying the dynamics of a
system so that the constraint manifold is attractive, without changing
the constrained solution. This constraint solver type is computationally
the least intensive, the least robust, and the fastest-simulating.

The precision to which the constraint is maintained depends on scale or
the physical system of units.

See also constraint, machine precision constraint, and tolerancing
constraint.

stiction actuator
Applies discontinuous friction forces to a joint primitive according to the
relative velocity of one body with the other body.

If this relative velocity drops below a specified threshold, the relative
motion ceases and the bodies or joints become locked rigidly to one
another by static friction.

Above that threshold, the bodies or joints move relative to one another
with kinetic friction.

See also actuator, composite joint, dynamics, joint, and primitive
joint.

subassembly
Representation of a subset of machine parts and constraints (mates)
in computer-aided design (CAD).

A subassembly is attached to its parent CAD assembly at a single
branching point.

A subassembly is either flexible or rigid. That is, its parts either can
move with respect to one another or they cannot.

See also assembly, computer-aided design (CAD), constraint, part,
and subassembly root.

Glossary-23

Glossary

subassembly root
A point in a computer-aided design (CAD) subassembly that does
not move relative to the assembly point off of which it branches.
All translational and rotational motion of parts in the subassembly
reference this unmoving point.

See also assembly, computer-aided design (CAD), fundamental
root, part, root body, and subassembly.

tolerancing constraint
A tolerancing constraint is numerically implemented on constrained
degrees of freedom only up to a specified accuracy and/or precision.

This accuracy/precision is independent of any accuracy/precision limits
on the solver used to integrate the system’s motion, although constraints
cannot be maintained to greater accuracy than the accuracy of the solver.

The precision to which the constraint is maintained depends on scale or
the physical system of units.

Tolerancing constraints are moderately robust and moderately intensive
and execute at moderate speed. They are less intensive than machine
precision constraints, but computationally more intensive than
stabilizing constraints.

Tolerancing constraints are most useful in realistic simulation of
constraint slippage (“slop” or “play”).

See also constraint, machine precision constraint, and stabilizing
constraint.

topology
The global connectivity of the elements of a machine.

For mechanical models, the elements are bodies and the connections are
joints, constraints, and drivers. Two topologies are equivalent if you can
transform one system into another by continuous deformations and
without cutting connections or joining elements.

An open system has no closed loops.

Glossary-24

Glossary

• An open chain is topologically equivalent to a line; and each body is
connected to only two other bodies, if the body is internal, or one
other body if it is at an end.

• An open tree has one or more branch points. A branch point is where
an internal body is connected to more than two other bodies. A tree
can be disconnected into multiple chains by cutting at the branch
points.

A closed loop system has one or more closed loops. The number of closed
loops is equal to the minimum number of joints, minus one, that must
be cut to dissociate a system into two disconnected systems.

An actual system can have one of these primitive topologies or can be
built from multiple primitive topologies.

See also body, closed loop system, joint, machine, and open system.

VRML
Virtual Reality Modeling Language, an open, Web-oriented ISO
standard for defining three-dimensional virtual worlds in multimedia
and the Internet. Virtual Reality Toolbox uses VRML to create and
populate virtual worlds with user-defined bodies.

In VRML, body rotations are represented in the axis-angle form. The
SimMechanics RotationMatrix2VR block converts rotation matrices to
the equivalent axis-angle forms.

See also axis-angle rotation and the Web3D Consortium at
www.web3d.org.

World
In SimMechanics, World is both the absolute inertial reference frame
(RF) and absolute coordinate system (CS) in that RF. World has a
fixed origin and fixed coordinate axes that cannot be changed.

Glossary-25

http://www.mathworks.com/products/virtualreality/
http://www.web3d.org

Glossary

The World coordinate axes are defined so that:

+x points right

+y points up (gravity in -y direction)

+z points out of the screen, in three dimensions

See also adjoining CS, coordinate system (CS), ground, grounded
CS, and reference frame (RF).

Glossary-26

Index

IndexA
abbreviations A-2
actuators

body 4-46
driver 4-57
initial condition 4-58
joint 4-52
stabilizing numerical derivatives 4-45
stiction 4-52

analysis modes 1-20
choosing 5-7
overview 1-20
See also Forward Dynamics mode, Inverse

Dynamics mode, Kinematics mode,
Trimming mode

Angle Driver block 11-2
animation, see visualization
assembling joints, see joints
assembly 7-6

CAD 7-6
See also computer-aided design

assembly configuration, see machine
configuration

assembly tolerances
defined 4-26
setting 5-5

axis-angle rotation 3-11

B
base body 4-24
Bearing block 11-5
block libraries

viewing 2-2
bodies

actuating 4-46
body coordinate systems 4-13
modeling 4-12
rigid 4-12
sensing 4-63

Bodies block library 2-4
Body Actuator block 11-24
Body block 11-11
body coordinate systems

adding and deleting 4-18
Body CS ports 4-5
Body Sensor block 11-28
Body Spring & Damper block 11-34
Bushing block 11-39

C
CAD, see computer-aided design
CAD-to-SimMechanics translator 7-3
closed loops

choosing cut joint 4-36
constraint or driver block in 4-40
cutting 4-36
disassembled joint in 4-33
Stewart platform example 9-8

code generation
case study 9-69
restrictions 5-34
run-time parameters 5-31
SimMechanics and 5-28

commands
import_physmod 12-2
mech_get_states 12-8
mech_runtime_states 12-10
mech_set_states 12-12
mech_stateVectorMgr 12-14
mech_transfer_states 12-21

computed force 4-65
computer-aided design (CAD)

building assemblies 7-6
editing models derived from 7-16
exporting assemblies into XML 7-10
generating CAD-based models 7-14
getting translator help 7-12

Index-1

Index

importing assemblies into
SimMechanics 7-14

installing CAD-to-SimMechanics
translators 7-5

models derived from 7-16
troubleshooting assembly export

errors 7-12
troubleshooting models derived from 7-19

connection lines 4-5
Connection Port block 11-44
connector ports 4-5
Constraint & Driver Sensor block 11-46
constraint solvers 5-6
constraint tolerances

defined 5-6
setting 5-7

constraints
directionality 4-39
holonomic 4-38
modeling 4-38
nonholonomic 4-38
rheonomic 4-38
scleronomic 4-38
sensing 4-65

Constraints & Drivers block library 2-5
Continuous Angle block 11-50
control design

case study 9-35
convex hulls 6-8
coordinate systems 3-5

transformations 3-6
Custom Joint block 11-53
cutting joints

automatic in closed loops 4-36
marking cut joint 5-13

Cylindrical block 11-61

D
damper, see spring-damper

degrees of freedom
apparent vs. independent 4-77
counting 4-77
relative 4-20
rotational 4-21
spherical 4-21
Stewart platform example 9-8
translational 4-21
weld 4-21

demo models
example 1-5
running 1-25

derivative
stabilizing in actuator signal 4-45

Disassembled Cylindrical block 11-66
disassembled joints, see joints
Disassembled Prismatic block 11-70
Disassembled Revolute block 11-74
Disassembled Spherical block 11-78
Distance Driver block 11-81
Driver Actuator block 11-84
drivers

actuating 4-57
directionality 4-39
modeling 4-38
sensing 4-65

dynamics 1-20

E
equivalent ellipsoids 6-5
errors, see simulation, fixing errors
Euler angles 3-13
Euler’s equations 8-4
exporting CAD assemblies, see computer-aided

design, see XML

F
follower body 4-24

Index-2

Index

Force Elements block library 2-5
Forward Dynamics mode

overview 1-20
friction 4-47

pure kinetic friction 4-47
See also stiction

G
Gear Constraint block 11-88
Gimbal block 11-92
gravity

as external signal 5-4
setting in a machine 5-3

Ground block 11-98
grounds

connecting to Machine Environment 4-10
ground point 4-10
grounded coordinate system 4-11
modeling 4-10

H
hardware-in-the-loop

case study 9-79
home configuration, see machine configuration

I
import_physmod command 12-2

import dialog 12-3
importing CAD assemblies, see computer-aided

design, see XML
In-Plane block 11-101
inertia tensor

defined 8-4
introduced 4-12
time-varying 4-49

initial conditions
setting 4-57

initial configuration, see machine configuration

internal forces
represented by force elements 4-69
via sensor-actuator feedback 4-72

Inverse Dynamics mode
finding forces from motion 8-7
overview 1-21
setting up motion actuation 8-7
simulating in 8-8

J
Joint Actuator block 11-106
Joint Initial Condition Actuator block 11-112
Joint Sensor block 11-117
Joint Spring & Damper block 11-124
Joint Stiction Actuator block 11-128
joints

actuating 4-52
assembly restrictions 4-26
automatic assembly of disassembled 4-34
cutting, automatic 4-36
cutting, manual 4-36
directionality 4-24
disassembled joints 4-33
joint primitives 4-21
manual assembly of 4-26
massless connectors 4-29
modeling 4-20
primitive axis 4-24
primitive vs. composite 4-21
sensing 4-65

Joints block library 2-5
Disassembled Joints block sublibrary 2-5
Massless Connectors block sublibrary 2-5

K
kinematics

machine state 3-2
overview 1-20

Index-3

Index

representing motion 3-7
Kinematics mode

finding forces from motion 8-7
overview 1-21
setting up motion actuation 8-7
simulating in 8-13
trimming in 9-24

L
Linear Driver block 11-138
linearization

overview 8-32
with closed-loop systems 8-40
with open-topology systems 8-34

M
machine

dimensionality 5-4
distinguished in a model 5-2
representing with blocks 4-3

machine configuration
assembled 3-2
home 3-2
initial 3-2

Machine Environment block
block reference 11-141
Constraints pane 11-145
Linearization pane 11-147
Parameters pane 11-143
Visualization pane 11-148

mass
defined 4-12
time-varying 4-49

massless connectors, see joints
mech_get_states command 12-8
mech_runtime_states command 12-10
mech_set_states command 12-12
mech_stateVectorMgr command 12-14

mech_transfer_states command 12-21
Mechanical Branching Bar block 11-150
mechanical settings

machine environment 5-3
simulation diagnostics 5-12

N
Newton’s equations 8-3
Newton’s laws 1-20

P
Parallel Constraint block 11-155
Planar block 11-158
Point-Curve Constraint block 11-164
Prismatic block 11-174

Q
quaternion 3-12

R
reaction force 4-65
reference frames 3-5
Revolute block 11-179
Revolute-Revolute block 11-184
Revolute-Spherical block 11-189
rotation matrix 3-12
RotationMatrix2VR block 11-194
rotations

converting angular velocity 3-17
converting representations 3-14
representing 3-11

S
Screw block 11-196
sensors

body 4-63

Index-4

Index

constraint & driver 4-65
joint 4-65

Sensors & Actuators block library 2-5
Shared Environment block 11-201
signal lines 4-5
simulation

fixing errors 5-17
internal SimMechanics steps 5-15

Simulink
choosing solver 5-13
Configuration Parameters dialog 5-11
ports 4-5
setting solver tolerances 5-14
signal lines 4-5

singularities
mitigating 5-25
setting robust handling 5-9

Six-DoF block 11-202
spanning tree 4-74
Spherical block 11-207
Spherical-Spherical block 11-212
spring-damper 4-69
states

displaying 12-14
setting 12-14
Stewart platform example 9-21

Stewart platform
computer-aided design 7-46
controlling 9-35
generating code for 9-69
hardware in the loop 9-79
modeling 9-13
overview 9-7
trimming 9-24

stiction 4-56
classical Coulomb theory 11-132
mixed static-kinetic friction 4-56
modeling 4-52
See also friction

subsystem

in SimMechanics 4-7
masking 4-9

T
technical conventions A-2
Telescoping block 11-217
tolerances, see assembly tolerances, see

constraint tolerances
topology

invalid 4-76
model 4-74
Stewart platform 9-8
validity of 4-76

trimming
with Kinematics mode 9-24

Trimming mode
overview 1-21
simulating in 8-18
with constrained systems 8-26
with unconstrained systems 8-20

troubleshooting, see computer-aided design,
see simulation, fixing errors

U
units, mechanical A-3
Universal block 11-222
Utilities block library 2-6

V
Variable Mass & Inertia Actuator block 11-227
Velocity Driver block 11-232
virtual reality

custom interface to SimMechanics 6-28
with computer-aided design (CAD) 6-28

visualization
changing display refresh rate 6-24
choosing body shape 6-5
controlling the simulation 6-24

Index-5

Index

machine display symbols 6-19
overview 1-21
perspective and window size 6-22
recording animations 6-26
rendering vs. animation 6-3
saving display settings 6-16
setting up 6-2
special SimMechanics symbols 6-12
special SimMechanics toolbar 6-16
speeding up animations 6-25
standard MATLAB Graphics controls 6-13

W
warnings

controlling warning messages 5-12
Weld block 11-237
working frame 3-5
World coordinate system 3-5

X
XML (Extensible Markup Language) 7-3

exporting from CAD 7-10
importing into SimMechanics 7-14
Physical Modeling format 7-3
See also computer-aided design

Index-6

	toc
	Introducing SimMechanics
	What Is SimMechanics?
	SimMechanics and Physical Modeling

	Related Products
	Requirements for SimMechanics
	SimMechanics Visualization Requirements
	Support for Recorded MATLAB Graphics Animations

	Other Related Products
	Physical Modeling Product Family
	For More Information About MathWorks Products

	Running a Demo Model
	What This Demo Illustrates
	Opening the Model
	The Block Diagram Model
	What the Model Contains

	Starting the Demo
	Modifying the Model
	Changing the Pusher Reference Position
	Visualizing and Animating the Conveyor

	What Can You Do with SimMechanics?
	For More Information
	Modeling Machines with SimMechanics
	Bodies, Coordinate Systems, Joints, and Constraints
	User-Defined Local Coordinate Systems
	Kinematic Constraints

	Sensors, Actuators, Friction, and Force Elements
	Simulating and Analyzing Mechanical Motion
	Mathematical Determination of Rigid Body Motion
	Forward Dynamics and Linearization
	Inverse Dynamics
	Kinematics
	Trimming
	Generating Code

	Visualizing and Animating Machines
	Visualizing Bodies During Machine Building
	Rendering Bodies
	Animating Machine Motion During Simulation

	Learning More
	Using the MATLAB Help System for Documentation and Demos
	Finding Special SimMechanics Help

	Building and Visualizing Simple Machines
	Introducing the SimMechanics Block Libraries
	Viewing the Blocks
	Microsoft Windows Platforms
	UNIX Platforms
	The SimMechanics Library
	Bodies Library
	Joints Library
	Constraints & Drivers Library
	Sensors & Actuators Library
	Force Elements Library
	Utilities Library

	Creating SimMechanics Models
	Essential Steps to Build a Model
	Essential Steps to Configure and Run a Model

	Building a Simple Pendulum
	Opening the SimMechanics Block Library
	The World Coordinate System and Gravity
	Configuring a Ground Block
	Steps to Configuring the Ground Block
	Properties of Grounds

	Configuring a Body Block
	Characteristics of a Body Block
	Properties of the Simple Pendulum Body
	Configuring the Body Dialog

	Configuring a Joint Block
	How to Connect a Joint Between Two Bodies
	Revolute Joint for the Simple Pendulum

	Adding a Sensor and Starting the Simulation
	Connecting and Configuring the Pendulum Sensor
	Configuring the Machine Environment and Configuration Parameters
	Starting and Interpreting the Motion

	Visualizing a Simple Pendulum
	Starting Visualization
	Rendering the Bodies
	Equivalent Ellipsoids
	Convex Hulls
	Choosing the Body Rendering

	Visualizing with MATLAB Graphics
	Rendering the Pendulum as a Convex Hull
	Rendering the Pendulum as an Equivalent Ellipsoid

	Modeling and Visualizing More Complex Machines

	Four Bar Mechanism
	Counting the Degrees of Freedom
	Configuring the Mechanical Environment
	The Machine Environment Dialog Box Panes
	Starting Visualization

	Setting Up the Block Diagram
	MAT-File Data Entry
	Block Diagram Setup

	Configuring the Ground and Joint Blocks
	Geometry of the Four Bar Base
	Setting Up the Grounds
	Configuring the Revolute Joints

	Configuring the Body Blocks
	Configuring the Bodies

	Sensing Motion and Running the Model
	Connecting the Joint Sensors
	Graphical Plot of Joint Motion with a Scope Block
	Configuring and Running the Simulation
	Animation

	For More About the Four Bar Machine

	Representing Motion
	Kinematics and the Machine's State of Motion
	Degrees of Freedom
	The State of Motion
	Home, Initial, and Assembled Configurations
	For More Information

	Body Motion in SimMechanics
	How to Read This Section
	References

	Overview of Machine Motion
	Reference Frames and Coordinate Systems
	Relating Coordinate Systems in Relative Motion
	Observing Body Motion in Different Coordinate Systems
	Relating Velocities Observed in Different Coordinate Systems

	Representing Body Translations and Rotations
	The Angular Velocity of a Body from Its Rotation Matrix
	The Permutation Symbol ɛ and the Vector Cross Product

	How SimMechanics Represents Body Orientation
	Axis-Angle Representation
	Quaternion Representation
	Rotation Matrix Representation
	Euler Angle Representation
	Converting Rotation Representations
	Transforming the Axis-Angle Representation
	Transforming the Quaternion Representation
	Transforming the Rotation Matrix Representation
	Transforming the Euler Angle Representation

	Converting the Angular Velocity

	Orienting a Body and Its Coordinate Systems
	Setting Up the Test Body
	Initializing the Body
	Configuring the Body

	Rotating the Body and Its CG CS Relative to World
	Computing the Rotation as a Quaternion
	Rotating the Body and Its CG CS Axes with the Quaternion

	Rotating the Body Relative to Its Center of Gravity
	Computing the Rotation as a Rotation Matrix
	Rotating the Body's Inertia Tensor
	Rotating the Body with the Rotation Matrix

	Creating and Rotating Body Coordinate Systems
	Creating and Viewing the New Body CSs
	Computing the Rotation as a Set of Euler Angles
	Rotating a Body CS Axis Triad

	Modeling Mechanical Systems
	Modeling Machines
	About SimMechanics Models
	Comparison to Other Simulink Models

	Creating a SimMechanics Model
	Connecting SimMechanics Blocks
	Connection Lines
	Connector Ports

	Interfacing SimMechanics Blocks to Simulink Blocks
	Setting SimMechanics Block Properties at the Command Line
	Creating SimMechanics Subsystems
	Creating a Subsystem Automatically
	Creating a Subsystem Manually

	Creating Custom SimMechanics Blocks with Masks

	Modeling Bodies and Grounds
	Machine Environment Required for Each Machine
	Modeling Grounds
	The World Coordinate System

	Modeling Rigid Bodies
	About Body Blocks
	Creating a Body Block
	Determining Inertia Tensors for Common Shapes

	Working with Body Coordinate Systems
	Setting a Body CS's Position
	Setting a Body CS's Orientation
	Managing Body Coordinate Systems
	Creating Body CS Ports

	Modeling Joints
	About Joints
	Joint Primitives
	Joint Types
	Joint Axes
	Joint Directionality
	Directionality of a Prismatic Joint . If the joint is prismatic,

	Assembly Restrictions

	Creating a Joint
	Directing Joint Axes
	Creating Actuator and Sensor Ports on a Joint
	Assembling Joints

	Modeling with Massless Connectors
	Creating a Massless Connector
	Massless Connector Example: Triple Pendulum
	Massless Connector Example: Four Bar Mechanism

	Modeling with Disassembled Joints
	Controlling Automatic Assembly and the Assembled Configuration
	Disassembled Joint Example: Four Bar Mechanism

	Cutting Closed Loops
	Displaying the Cut Joints
	For More About Disassembled and Cut Joints
	For More About Constraints and Drivers

	Modeling Constraints and Drivers
	What Constraints and Drivers Do
	Directionality of Constraints and Drivers
	Solving Constraints
	Mitigating Constraint Singularities

	Restrictions on Using Constraint and Driver Blocks
	Constraint Example: Gear Constraint
	Visualizing the Gear Motion

	Driver Example: Angle Driver
	The Angle Driver Without a Driver Actuator
	Visualizing the Angle Driver Motion
	The Angle Driver With a Driver Actuator

	Modeling Actuators
	Stabilizing Numerical Derivatives in Actuator Signals
	Actuating a Body
	Body Actuator Example: Pure Kinetic Friction
	Applying Motions to Bodies

	Varying a Body's Mass and Inertia Tensor
	Example: Simple Rocket

	Actuating a Joint
	Joint Actuator Example: Body Driver
	Joint Stiction Actuator Example: Mixed Static and Kinetic Fricti

	Actuating a Driver
	Specifying Initial Positions and Velocities
	Using JICA Blocks
	JICA Example: A Simple Pendulum

	Modeling Sensors
	Home Configuration and Position-Orientation Measurements
	Sensing Body Motions
	Sensing Joint Motions and Forces
	Sensing Constraint Reaction Forces
	Example: Linear Driver

	Modeling Force Elements
	Inserting a Linear Force Between Bodies
	Inserting a Linear Force or Torque Through a Joint
	Customizing Force Elements with Sensor-Actuator Feedback

	Checking Model Validity
	Verifying Machine Topology
	Machine Topology and Subsystems
	Determining a Machine's Spanning Tree
	Determining the Validity of a Spanning Tree
	Examples of Invalid Machine Topologies

	Counting Degrees of Freedom
	Degrees of Freedom in Subsystems
	Finding Independent Degrees of Freedom
	The Role of Joint Stiction Actuators
	DoF Example: Double Pendulum
	DoF Example: Four Bar Mechanism

	Running Mechanical Models
	Running SimMechanics Models in Simulink
	Distinguishing Models and Machines
	Machine Settings via the Machine Environment Block
	Model-Wide Settings via Simulink

	Configuring a Machine's Mechanical Environment
	The Machine Environment Block
	Setting Gravity
	Gravity as an External Simulink Signal

	Choosing Your Machine's Dimensionality
	Determining the Dimensionality of Your Machine Manually
	Blocks That Require Three-Dimensional Simulation
	Code Generated from Two-Dimensional Models

	Setting Assembly Tolerances
	How SimMechanics Implements Assembly Tolerances

	Implementing Constraints
	Stabilizing Constraint Solver
	Tolerancing Constraint Solver
	Setting Constraint Tolerances
	Machine-Precision Constraint Solver

	Analyzing the Motion
	Choosing an Analysis Mode
	Forward Dynamics Mode
	Inverse Dynamics Mode
	Kinematics Mode
	Trimming Mode
	Special Settings If You Linearize a Machine

	Handling Motion Singularities

	Controlling the Simulation
	Configuring SimMechanics Simulation Diagnostics
	Warning on Redundant Constraints
	Warning on Unstable Constraints in Initial State
	Marking Automatically Cut Joints

	Visualizing Your Machines
	Choosing a Simulink Solver
	Setting Simulink Solver Tolerances
	Solver Tolerances and Stiction

	Starting the Simulation

	How SimMechanics Works
	Model Validation
	Machine Initialization
	Force Analysis and Motion Integration
	Stiction Mode Iteration

	Troubleshooting Simulation Errors
	Data Validation Errors
	Ground and Body Geometry Errors
	Joint Geometry Errors
	Assembly Tolerances Violated
	Zero Massless Connector Distance
	Composite Joints: Restrictions Among Primitives

	Block Connection and Topology Errors
	Motion Inconsistency and Singularity Errors
	Zero Masses and Moments of Inertia
	Alignment of Distinct Primitives
	No Degrees of Freedom
	Incorrect Machine Dimensionality
	Redundant Constraints
	Violated Constraints
	Conflicting Actuators
	Sticky Joints in Conflict

	Analysis Mode Errors

	Improving Performance
	Simplifying the Degrees of Freedom
	Eliminating Unnecessary Degrees of Freedom
	Freezing “Fast” and “Slow” Degrees of Freedom
	Removing Stiction Actuators
	Simulating in Two Dimensions

	Adjusting Constraint Tolerances
	Smoothing Motion Singularities
	Avoiding Singular Initial Configurations

	Changing the Simulink Solver and Tolerances
	Solving Stiff Systems
	Real-Time Simulation and Ignoring Motion Details with Fixed-Step

	Adjusting the Time Step in Real-Time Simulation
	Reference

	Generating Code
	Related Simulink Code Generation Documentation
	Reasons for Generating Code
	Using Code-Related Products and Features
	How SimMechanics Code Generation Differs from Simulink
	SimMechanics and Simulink Code Are Generated Separately
	SimMechanics Code Reuse Is Not Supported

	Using Run-Time Parameters in Generated Code
	Changing Run-Time Parameters
	Example: Changing a Block Parameter
	Tunable Parameters Not Supported by SimMechanics Code Generation
	SimMechanics Run-Time Parameter Inlining Ignores Global Exceptio

	Limitations
	Changing Block Properties at the Command Line
	Restricted Simulink Tools
	Unsupported Simulink Tool
	Simulink Tools Not Compatible with SimMechanics Blocks
	Restrictions on Two-Dimensional Simulation
	Restrictions with Generated Code
	Stiction-Related Algebraic Loops Disabled
	Closed-Loop Limitations
	Restrictions on Code Generated from Two-Dimensional Machines
	Fixed-Point Not Supported by SimMechanics Code Generation

	Visualizing and Animating Machines
	Starting SimMechanics Visualization
	Rendering Your Machines in Static Display
	Animating Your Machines During Simulation
	Other SimMechanics Visualization Controls
	Using SimMechanics Visualization
	Rendering Versus Animation
	Static Rendering
	Dynamic Animation

	Creating an External Virtual Reality Client

	Rendering Body Shapes in SimMechanics
	Choosing the Body Shape
	Equivalent Ellipsoids
	Triangle Inequalities
	Ellipsoids with Special Symmetry
	Reduced-Dimension Ellipsoids
	Example: Simple Pendulum Rod

	Convex Hulls
	Example: Four-Cylinder Engine Crank

	Introducing the SimMechanics Visualization Window
	Opening and Updating the SimMechanics Visualization Window
	Interpreting the Special SimMechanics Symbols
	Using the Standard MATLAB Graphics Controls
	Accessing the Special SimMechanics Features
	The SimMechanics Visualization Menu
	The SimMechanics Visualization Toolbar

	Saving and Recalling Display Settings
	Saving Display Settings
	Reopening a Model Visualization
	Reloading Display Settings Manually
	Resetting Display Settings to Default

	Controlling Machine Displays in SimMechanics
	Highlighting Bodies and Body Blocks
	Changing Machine Display Symbols
	Changing Machine Display Symbols

	Changing Perspective and Window Size
	Setting a Perspective Automatically
	Setting a Perspective Manually
	Changing the Window and Axis Size

	Animating SimMechanics Simulations
	Controlling the Simulation from the Window
	Changing the Machine Display Refresh Rate
	Example: Changing the Refresh Sampling Rate

	Speeding Up the Animation
	Recording and Playing Animations
	Changing the Name and Storage Directory of the Animation File
	Compressing the Animation File
	Playing Back the Animation File

	Custom Visualization with Virtual Reality
	Creating Virtual Worlds for SimMechanics Models
	Editing Virtual Worlds and VRML Files
	Representing Bodies as Virtual Objects
	Example: Viewing Custom External VRML Files for the Conveyor Loa

	Interfacing SimMechanics with Virtual Worlds
	Adding and Configuring Body Sensors
	Animating the Virtual World Bodies
	Converting Body Sensor Signals into VRML Format
	Example: Interfacing the Conveyor Loader Model and Virtual World

	Modeling with Computer-Aided Design
	Introducing CAD Translation
	CAD Translation Software Requirements
	Overview of the CAD Translation Steps
	Exporting an Assembly
	Importing a Model

	Installing the CAD-to-SimMechanics Translator
	Downloading the Translator
	Installing the Translator
	Installing the Translator over a Network
	Linking the Translator to Your CAD Platform
	Finding the Translator Help and Example Files

	Exporting CAD Assemblies into Physical Modeling XML
	Building a CAD Assembly for SimMechanics
	Roots and Root Bodies
	Subassemblies and Hierarchies
	Improving Your Assembly with Subassemblies
	Mass Properties of Assembly Parts
	Constraint Geometries
	Avoiding Redundant Constraints

	Translating CAD Assemblies into XML
	Applying the Translator Settings
	Configuring Tolerances
	Creating the XML File

	Troubleshooting Assembly Export Problems
	Constraint Translation Errors
	Subassembly Configuration Errors

	Getting Help in the Translator Window
	Getting HTML Help
	Getting PDF Help

	Creating Models from Physical Modeling XML
	Generating Body-Joint CAD-Based Models
	Changing the Appearance of a Generated Model
	Using the Physical Modeling XML File Import Dialog

	Common Features of CAD-Based Models
	Joints and Subsystem Hierarchy

	Editing and Completing Generated Models
	Deleting Unnecessary Blocks
	Constraining and Driving Degrees of Freedom
	Actuating Bodies and Joints with Motions and Forces
	Setting the Model's Initial Conditions
	Sensing Forces and Motions
	Satisfying General SimMechanics Requirements

	Troubleshooting CAD-Based Models
	General Guidelines
	Troubleshooting Errors During Model Generation
	Troubleshooting Model Dynamics Errors
	Troubleshooting SimMechanics and Simulink Problems

	Overview of CAD Translation Examples
	Exporting a CAD Part
	Viewing the CAD Assembly
	Exporting the CAD Assembly
	Generating the SimMechanics Model

	Designing and Exporting CAD Constraints
	Restricting Degrees of Freedom with Constraints
	Part-Constraint Assembly Examples in This Section
	Locating the Example Assembly Files
	Common Steps for Generating the Two-Part Models
	Viewing and Exporting an Assembly
	Generating a Model

	Block Structure of the Two-Part Models
	Modeling a Six-DoF Joint
	Exporting the Assembly
	Generating the Model

	Modeling a Prismatic Joint
	Prismatic as a Planar Constraint and a Cylindrical Constraint
	Prismatic as Two Orthogonal Planar Constraints
	Exporting the Assemblies and Generating SimMechanics Models

	Modeling a Revolute Joint
	Viewing the Assembly
	Exporting the Assembly and Generating the Model

	Modeling an Inplane Joint
	Viewing the Assembly
	Exporting the Assembly and Generating the Model

	Modeling a Spherical-Spherical Massless Connector
	Viewing the Assembly
	Exporting the Assembly and Generating the Model

	Creating a CAD-Based Robot Arm Model
	Viewing the Robot Arm Assembly
	Exporting the Robot Arm Assembly
	Generating and Completing the Robot Arm Model
	Generating the Initial Model
	Obtaining Simulink and Additional SimMechanics Blocks
	Editing the Bodies
	Editing the Joints
	Adding an Actuator and a Sensor
	Configuring Tolerances

	Simulating and Observing the Robot Arm Motion

	Modeling a Stewart Platform in CAD
	What the Stewart Platform Does
	Viewing the Stewart Platform Assembly
	Exporting the Stewart Platform Assembly
	Generating the Stewart Platform Model
	Inspecting the Generated Model and Counting Its DoFs
	Deleting Unnecessary Bodies and Joints
	Adding Actuators and Sensors

	Visualizing the Stewart Platform Motion

	Analyzing Motion
	Dynamics of Mechanical Systems
	Forward and Inverse Dynamics
	Applying the Motion Modes

	Forces and Torques Determine Accelerations
	Newton's Equations for Translational Dynamics
	Euler's Equations for Rotational Dynamics
	Linearizing the Dynamical Equations
	Linearizing the Constraints

	Finding Forces from Motions
	Inverse Dynamics Mode with a Double Pendulum
	Using Body Blocks to Specify Initial Conditions
	Using Actuator Blocks to Specify the Initial States
	Specifying the Motion and Measuring the Computed Torques
	Using the Computed Torques in Forward Dynamics
	Making More Accurate Torque Measurements

	Kinematics Mode with a Four Bar System
	Transforming Forward into Inverse Dynamics
	Finding and Checking the Needed Torque

	Trimming Mechanical Models
	Restrictions on Trimming Mechanical Models
	Trimming in the Presence of Motion Actuation
	Motion Actuation as an Indirect Input

	Unconstrained Trimming of a Spring-Loaded Double Pendulum
	Making an Initial Equilibrium Guess
	Analyzing and Initializing the State Vector
	Trimming the System to Equilibrium

	Constrained Trimming of a Four Bar Machine
	Setting Up the Four Bar for Trimming
	Analyzing and Using the State Vector
	Trimming the Four Bar
	For More Information About Trimming Closed-Loop Systems

	Linearizing Mechanical Models
	Restrictions on Linearizing Mechanical Models
	Linearizing in the Presence of Motion Actuation
	Motion Actuation as an Indirect Input

	Open-Topology Linearization: Double Pendulum
	Linearizing the Model
	Deriving the Linearized State Space Model
	Modeling the Linearization Error

	Closed-Loop Linearization: Four Bar Machine
	Analyzing the Four Bar Geometry and Closed-Loop Constraint
	Making an Equilibrium Guess
	Determining the Natural Equilibrium with trim
	Linearizing the Model at the Natural Equilibrium
	For More Information About State Space and Linearization

	Case Studies
	Overview of Case Studies
	Understanding the Stewart Platform
	About the Case Studies
	Structure and Dependencies
	Case Study Files
	Saving Intermediate Stages of Work

	Products Needed for the Case Studies
	References

	Introducing the Stewart Platform
	Origin and Uses of the Stewart Platform
	Characteristics of the Stewart Platform
	Counting the Degrees of Freedom
	Counting Degrees of Freedom on Bodies in Space
	Counting Degrees of Freedom as Joint Primitives
	Counting Loops . The Stewart platform legs form six loops, but o

	Representing the Independent Degrees of Freedom
	For More About Bodies, Joints, Degrees of Freedom, and Topology

	Modeling the Stewart Platform in SimMechanics
	Modeling the Physical Plant
	Viewing the Platform Model

	Modeling Controllers
	Generating the Reference Trajectory
	Finding the Motion Error
	The Standard PID Controller and Its Control Law
	For More About Controllers

	Initializing the Stewart Platform in SimMechanics
	Body and Joint Geometric Configuration
	Body Mass Properties
	Motion Constants, Controller Parameters, and Initial Condition

	Identifying the Simulink and Mechanical States
	Pure Simulink States
	Mechanical States in Forward Dynamics Mode
	Mechanical States in Trimming and Kinematics Modes
	For More About Mechanical States, Cutting Loops, and Analysis Mo

	Visualizing the Stewart Platform Motion

	Trimming Through Inverse Dynamics
	What Is Trimming?
	Ways to Find an Operating Point
	Trimming in the Kinematics Mode
	Simulation Settings for Inverse Dynamics
	Specifying the Motion
	Measuring the Steady-State Forces
	Running the Model and Obtaining the Outputs

	Linearizing the Platform at the Operating Point
	Linearizing the Forward Dynamics Model
	Finding the Minimal Realization of the Linearized Model
	For More About Linearization and State Space

	Further Suggestions for Inverse Dynamics Trimming
	General Trimming Conditions: Mixed Dynamics
	Using the Operating Point to Linearize a Model

	Designing Controllers
	Case Study Tasks
	Case Study Files
	Nature of the Control Problem
	Control Transfer Function Forms and Units
	A First Look at the Stewart Platform Control Model
	Viewing the Controller
	Configuring the Dynamics
	Simulating the Stewart Platform Without Controls

	Improper and Biproper PID Controllers
	Switching to the PID Controller Subsystem
	Simulating the Controlled Motion
	Finding the Numerical Derivative of the True and Reference Traje
	Simulating at Symmetric Equilibrium

	Analyzing the PID Controller Response
	Improper PID Controller: Theory
	Filtered Derivative and Proper PID Controller: Theory
	PID Controller: Alternative Forms
	PID Controller: LTI Analysis

	Designing a New PID Controller
	Making a First Guess for the Controller Gain
	Making a First Guess for the Controller Force
	Modifying the Null Controller with a Constant Force
	Simulating the Platform with the Constant Force

	Trimming and Linearizing the Platform Motion
	For More About Trimming
	Setting Up the Model for Trimming
	Locating an Operating Point by Trimming
	Interpreting and Saving the Operating Point
	Linearizing the Platform Motion at the Operating Point
	Interpreting and Saving the Linearization Results
	Further Suggestions

	Improving the New PID Controller
	What You Need from Previous Sections
	Reducing the State Space with Minimal Realization
	Exploring PID Gains, Filtered Derivative, and Force Saturation
	Analyzing the Plant Response with the SISO Design Tool
	Designing a New Biproper PID Controller with the Plant Response
	Optimizing the New Biproper PID Controller with the Plant Respon
	Saving the Optimized New Biproper Control Law
	Resetting the PID Gains and Derivative Cutoff
	Checking the Symmetric Equilibrium
	Simulating the Moving Platform and Capturing the Motion Errors

	A Robust, Multichannel Controller
	What You Need from Previous Sections
	Viewing the H-Infinity Controller
	Defining a Desired Loop Shape Response
	Synthesize and Reduce a Controller with the Desired Loop Shape
	Simulating the Robust Controller and Capturing Its Motion Errors
	Plotting and Comparing the Results

	For More About Designing Controllers
	Finding Other Operating Points
	Compensating for Noise and Uncertainty
	Designing for Hardware Implementation

	Simulating with Code
	Code Generation Tasks
	For More Information About Code Generation
	Learning About the Model
	Solver and Sample Time Step Sizes
	Structure of the Model
	Simulation Settings for Code Generation

	Generating an S-Function Block for the Plant
	Model Referencing the Plant
	Simulation Settings for Model Reference
	Setting Up and Running the Main Model for Model Reference

	Generating Stand-Alone Code for the Whole Model

	Hardware in the Loop
	For More Information About xPC Target
	Files Needed for This Study
	Adjusting Hardware for Computational Demands
	Real-Time Simulation Tradeoff for SimMechanics
	Mitigating the Real-Time Simulation Tradeoff

	Downloading a Complete Model to the Target
	Setting Up the Target Computer and Host-Target Connection
	Examining and Running the xPC Model — Data Type Conversion
	Generating and Downloading Code from the xPC Model
	Running the xPC Stewart Platform Model on the Target
	Viewing the Target Simulation with xPC Scopes
	Adjusting the Step and Sample Times — Testing for CPU Overload

	Configuring for Realistic Hardware
	Separating Controller and Plant — Bus Communication — Discretiza
	Hardware Configuration Possibilities
	Mitigating Real-Time Tradeoffs

	Blocks — By Category
	Machines, Bodies, and Grounds
	Joints
	Assembled Joints
	Disassembled Joints
	Massless Connectors

	Constraints and Drivers
	Actuators and Sensors
	Force Elements
	Utilities

	Blocks — Alphabetical List
	Commands — Alphabetical List
	Technical Conventions
	Mechanical Conventions and Abbreviations
	Right-Hand Rule Is Assumed
	Vector Multiplication
	Common Abbreviations
	Glossary Terms

	Mechanical Units

	Bibliography
	Glossary
	Index

	tables
	Body Data for the Simple Pendulum
	Geometric Properties of the Four Bar Grounds
	Bar1 Mass and Body CS Data (MKS Units)
	Bar2 Mass and Body CS Data (MKS Units)
	Bar3 Mass and Body CS Data (MKS Units)
	Stewart Platform Initialization M-File
	Motion and Filtering Constants
	PID Controller Constants
	Configuration Parameters
	Machine Environment
	Complementarity of Inverse and Forward Dynamics
	Complementarity of Trimming and Linearization
	Configuration Parameters for Stewart Platform Code Generation
	Machine Environment Settings for Stewart Platform Code Generatio

